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Preface

This book is a collection of notes for the “Real and Functional Analysis”
(RFA, but universally known as ARF) course held in Politecnico di Milano,
in the Mathematical Engineering Master’s Degree.

It was written over the course of many years, with contributions by sev-
eral Fubini-Tonelli authors: Gabriele Gabrielli, Teo Bucci, Gioele Cerri,
Bruno Guindani. We would also like to thank some external collaborators
who helped in correcting some mistakes: Filippo Cipriani, Gabriele Corbo,
Marco Lucchini.

This is also the first collection of lecture notes to be entirely written in En-
glish, which allows Fubini-Tonelli to expand in yet another area of knowl-
edge, and hopefully among many new readers. Unfortunately, the language
barrier means that we will not be able to write as many bad jokes as we
did in the Italian books, but we hope that readers will enjoy the journey
nonetheless.

Real and Functional Analysis is a mandatory stepping stone for all future
M.Sc. mathematical engineers, and it is notoriously one of the most dif-
ficult exams of this degree, perhaps the most difficult one. Therefore, we
immediately warn the readers: it will not be easy, and you will spend sleep-
deprived weekend nights trying to understand how the heck bidual Banach
spaces interact with Ascoli-Arzelà’s theorem. But also, you will encounter
Fubini-Tonelli’s theorem eventually, so there is really nothing to be worried
about in the end.

The authors
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1 Fundamentals of Set Theory and Topology

This chapter’s aim is to provide some basic tool that are required before
studying the Measure Theory. Here we try to figure out what is a set and
what is infinity. Later we will introduce some notions of Topology.

1.1 Set Theory

Sets are of fundamental importance for mathematics, but it may be sur-
prisingly difficult to understand what a set actually is. This problem arises
due to limitations in language: common language is not a reliable tool to
deal with logical or abstract concepts. The entry “set” in the Oxford En-
glish Dictionary takes up a large number of pages, which just goes to show
that understanding the topic is not an easy task. As if it was not enough,
the mathematical concept of set presents more difficulties, as explained by
Bertrand Russel through the so-called “Barber paradox”:

The barber is the “one who shaves all those, and those only,
who do not shave themselves”. The question is, does the barber
shave himself?

Another formulation, more formal, of the same paradox is the following:
“What is the set of all sets that are not members of themselves?”

The mathematicians’ solution for the definition of set is an axiomatic the-
ory, which is an abstract theory based on axioms: you don’t have to explain
something which is arbitrarily defined as true. This theory claims that there
exist particular objects, called sets, which satisfy a list of axioms. That list
was written in order to avoid paradoxes. Such kind of theory is really diffi-
cult to grasp, and was constructed by Ernst Zermelo and Abraham Fraenkel
(ZF) at the beginning of the 20th century.1

Nevertheless, Georg Cantor worked on a naïve set theory, which simplifies
many concepts from ZF theory in order to be more usable, at expense
of rigor. We will follow this approach, which doesn’t provide a rigorous
definition of set, but it uses only its intuitive notion: this theory defines the
set as a “collection” of objects called elements. The Cantor naïve set theory
will be our reference framework for set theory.

1To understand how complex the theory is, just know that the definition of empty set
is provided at page 200.
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1.1.1 Set conventions and main operations

Basic notions and definitions First of all, now we provide the conventions
that are used in this text:

• sets are denoted with upper case letters:

A, B, X, Y

• elements of sets are denoted with lower case letter:

a, b, x, y

• belonging of an element to a set is denoted with the symbol “∈”: the
notation a ∈ A means that the element “a” belongs to the set “A”;

• not belonging of an element to a set is denoted with the symbol “∈”:
the notation a /∈ A means that the element “a” does not belongs to
the set “A”.

The following is an example of recursive definition of a set: A = {x : x ∈ A},
this namely means that A is the set of all the elements x of A.

Intuitively, two sets A and B are equal if and only if each element of A
belongs to B and each element of B belongs to A; that is, in symbols:

A = B ⇐⇒ (∀a ∈ A =⇒ a ∈ B) ∧ (∀b ∈ B =⇒ b ∈ A) .

A set with only one element, like {a}, is called singleton.

If X has a “reasonable" finite number of elements, say a, b, c, d than we
can represent the set listing its elements:

X = {a, b, c, d} = {d, a, b, c}

Notice that order does not matter for sets.

We state the following axiom: “there exists a set such that no element
belongs to it”, this particular set is named as emptyset, and can be defined
as follows:

∅ = {x : x ̸= x}.

Observe that the empty set is unique; this can be proved by the condition
on equality between two set that was stated before: if no element belongs
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to A (thus A is an empty set) and no element belongs to B (thus B is an
empty set), then A is equal to B.

Definition 1.1.1
Sets can also exist as elements of another set, which is sometimes
referred to as collection or family of sets, in particular:

• inclusion: A ⊆ B
The set A is included in the set B, that is every element which
belongs to A also belongs to B:

x ∈ A =⇒ x ∈ B.

• strict or proper inclusion: A ⊊ B
The set A is included in B and some elements of B doesn’t be-
longs also to A:

(x ∈ A =⇒ x ∈ B) ∧A ̸= B.

Then, if A is strictly contained in B, that is A ⊊ B, the set A is
a proper subset of B.

A set A can be determined, and defined, as the collection of all the elements
belonging to a set “universe” X which has a certain property P (x), by
writing:

A = {x ∈ X : P (x)is true}.

Main set operations Now we introduce the fundamental operations be-
tween sets:

Definition 1.1.2
The following operation are defined for two sets, further some of
them are defined in case of family of sets:

• union: takes every elements which belong to at least one set:

A ∪B := {x : (x ∈ A) ∨ (x ∈ B)};

• intersection: takes only the elements which belong to both of
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sets:
A ∩B := {x : (x ∈ A) ∧ (x ∈ B)};

• difference: takes only the elements which belong to the first set
and do not belong to the second one:

A \B = A−B := {x ∈ A : x /∈ B};

• complement of a set with respect to a given universe X such
that A ⊂ X:

CXA = AC := {x ∈ X : x /∈ A};

• symmetric difference: takes only the elements which belong to
only one of the two sets:

A △ B := (A ∪B)\(A ∩B) = {x : (x ∈ A∨x ∈ B)∧(x ∈ A ∧ x ∈ B)}.

Moreover, if A ∩B = ∅ then A and B are disjoint.

Some operations can be defined also for been applied not only to two but
to multiple set. In case of unions:

• union for infinite sets:
∞⋃
j=0

Ai := {x : ∃ i ∈ N : x ∈ Aj};

• union of sets indexed by a set:⋃
α∈J

Aα := {x : ∃α ∈ J : x ∈ Aα};

• union of sets belonging to a family of sets:⋃
A∈A

A := {x : x ∈ A for some A ∈ A}.

Similar in case of intersections:

12



• intersection for infinite sets:
∞⋂
j=0

Ai := {x : ∀i ∈ N : x ∈ Aj};

• intersection of sets indexed by a set:⋂
α∈J

Aα := {x : ∀α ∈ J : x ∈ Aα};

• intersection of sets belonging to a family of sets:⋂
A∈A

A := {x : ∀A ∈ Ax ∈ A}.

Each operation has properties related to it. The most basic ones are for
example commutativity and associativity. In the case of union and inter-
section of sets as defined above, we have these distributive properties:

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C) , (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C) ,

and the De Morgan’s Laws:

(A ∪B)C = AC ∩BC, (A ∩B)C = AC ∪BC.

These holds also for multiple sets, for instance:(⋃
α∈J

Aα

)C

=
⋂
α∈J

AC
α ,

(⋂
α∈J

Aα

)C

=
⋃
α∈J

AC
α .

Often a universe set X is used: that is consider the set of all the possible
elements. In this case, ∅C = X and XC = ∅

Consider now the case in which we need to slice a set into multiple subsets.
If every element of the original set will belong to only one subsets than
those sets are mutually disjoints, so we have construct a partition of a set:
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Definition 1.1.3
Let X be a non-empty set: a partition of the set X is a family of
subset of X such that they are pairwise disjoint and their union is
X itself:

Xi ∈ P(X),
⋃
j

Xj = X, Xi ∩Xj = ∅ ∀i ̸= y.

Power set Now we will introduce two new set operations, which give as a
result a different “kind” of set from the initial ones.

Definition 1.1.4
The power set2 of an another existing set X is the set whose ele-
ments are all the possible subsets of X:

P (X) = {A : A ⊆ X}

It is important to become familiar with the formalism and the correct no-
tation. Given a ∈ X, notice that:

• a ∈ P (X) is wrong, because a is an element with respect to X, while
the elements of P are sets with respect to X.

• {a} ∈ P (X) is correct.

For the same reasons, writing {a} ∈ X is wrong, and the correct notation
is {a} ⊂ X.

It should be known that the power set of the empty set is the set which
contains the empty set, not the empty set itself:

P (∅) = {∅}

Cartesian product Now consider two non-empty set A and B, we want to
combine each element of A with every element of B into ordered pairs:

a ∈ A, b ∈ B 7→ (a, b)

Notice that the first element of the couple belongs to the first set and
similarly for the second element. So we consider the pair as a new element.
We can define a set which contain all such elements:

2Italian translation: insieme delle parti.

14



Definition 1.1.5
Let A and B two non-empty sets.
The set which contains all the possible couples (a, b) where a ∈ A
and b ∈ B is the cartesian product of A and B:

A×B := { all the ordered pairs (a, b) : a ∈ A, b ∈ B}.

Let’s show some properties:

• (a, b) = (ã, b̃) if and only if a = ã and b = b̃;

• in general the cartesian product is not commutative, that is: A×B ̸=
B ×A, unless A = B;

• the cartesian product is associative: (A×B)× C = A× (B × C);

• thanks to the associative property we can define the cartesian product
for multiple sets: X1 ×X2 × · · · ×XN ;

• from the previous point we define the following: XN := X × · · · ×X,
N times.

The real number set R The set of real number will be the setting in which
we will work in next sections. We define a proper symbol for its cartesian
product:

RN = R× R× · · · × R︸ ︷︷ ︸
n times

.

1.1.2 Relations and functions

Now introduce the concept of functions, starting from the more general
notion of relation.

Definition 1.1.6
Consider two sets X, Y ̸= ∅.
A binary relation r from X to Y is a subset of X × Y .
The domain of a relation is the set of all elements of X that belongs
to the relation:

dom(r) := {x ∈ X : (x, y) ∈ r for some y ∈ Y }.
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The range of a relation is the set of all elements of Y that belongs
to the relation:

rng(r) := {y ∈ Y : (x, y) ∈ r for some x ∈ X}.

When (x, y), (x, z) ∈ r =⇒ y = z, then r is a single valued relation; this
kind of relation plays an important role in mathematics, they are known
also as functions:

Definition 1.1.7
A law (rule) f : X → Y is a function (or mapping, map, transfor-
mation) if it associates to an element of X one and only one element
of Y .
If X = N, then this function is called sequence.

This definition was formulated by Dirichlet as follows:

y is a function of a variable x defined on the interval a < x < b if
to every value of the variable x in this interval there corresponds
a definite value of the variable y. Also, it is irrelevant in what
way this correspondence is established.3

A function can be applied also to an entire set: consider for example A ⊂ X,
then:

f(A) := {y ∈ Y : (x, y) ∈ f for some x ∈ dom(f) ∩A}.

There exist different ways to write functions. If we want to highlight the
relation to the elements instead, we will use one of those notation:

f : x 7→ y, y = f (x)

which are equivalent to (x, y) ∈ f , where y is the image of x and x is the
preimage4 (or counterimage, inverse image) of y.

In case we want to highlight how two set are related through a function f ,
then we will denote that as:

f : X → Y

In this case the set Y image of the set X, while X is the preimage of
Y .

3Cited in I. Kleiner, Evolution of the Function Concept: A Brief Survey, College
Mathematics Journal vol. 20 iss. 4, page 291.

4Italian translation: controimmagine.
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Definition 1.1.8
The inverse function of a function f : X → Y is denoted by f−1

and, if B ⊆ Y , is defined as:

f−1(B) = {x ∈ X : x = f−1(y) for some y ∈ B}.

Here we state some properties with respect to union and intersection:

Proposition 1.1.9 (Set function properties)
Consider the sets A, Aj ⊂ X and Bj ⊂ Y for j = 1, 2.
Then:

• f−1(AC) = (f−1(A))C;

• f (A1 ∪A2) = f (A1) ∪ f (A2);

• f (A1 ∩A2) ⊆ f (A1) ∩ f (A2);

• f−1 (B1 ∪B2) = f−1 (B1) ∪ f−1 (B2);

• f−1 (B1 ∩B2) = f−1 (B1) ∩ f−1 (B2).

Pay attention: the third property is not an equivalence like the other ones,
but it states an inclusion. Let us give a counterexample.

Example 1.1.10 . Let f : R2 → R2, f(x, y) 7→ (x, 0) be the function that
projects on the x axis.
Let also A = {(x, 0) : x ∈ [0, 1]}, and B = {(x, 1) : x ∈ [0, 1]}. So we have
A ∩B = ∅, and thus f (A ∩B) = ∅.
But f (B) = A = f (A), and finally f (A) ∩ f (B) = A.

B

A

1

0 1
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Functions can have different behavior with respect to how many times they
relate each element of a set to another:

Definition 1.1.11
A function f : dom(f) → Y is:

• an injection if f(x) ̸= f(x̃) for x ̸= x̃;

• a surjection if rng(f) = Y or equivalently f(dom(f)) = Y ;

• a bijection if it is both surjective and injective.

Now consider the case in which we have a function f : X → Y and a
function g : Y → Z. If every image of f is in the domain of g than we
can build a new function from X to Z through a composition of f and g:

Definition 1.1.12
Let f : X → Y and g : Y → Z be two functions.
Than the composition of g with f is defined by:

g ◦ f := {(x, z) ∈ X × Z : ∃ y ∈ Y : (x, y) ∈ f ∧ (y, z) ∈ g}.

It is also possible to define a binary relation from a function:

r(x, y) = f(x)− y, r = {(x, y) ∈ X × Y : r(x, y) = 0}.

In this case (x, y) ∈ r if and only if f(x)− y = 0, that is r(x, y) = 0.

Order relations We have seen that the relations are a generalization of
functions, so functions are a sort of special kind of relations. There exists
also other notably kind of relations, one of those are used to define an order
inside a set:

Definition 1.1.13
Let X ̸= ∅, r ⊆ X ×X is an order relation in X if the following
properties holds (let x, y, z ∈ X):

• reflexivity:
(x, x) ∈ r;

18



• antisymmetry:

((x, y) ∈ r ∧ (y, x) ∈ r) ⇐⇒ x = y;

• transitivity:

((x, y) ∈ r ∧ (y, z) ∈ r) =⇒ (x, z) ∈ r.

A generic order relation is denoted by ⪯.

A famous order relation is the canonical order in N or inQ or in R: this order
is the principle that allow as to say that a number is greater to another.
This particular relation is denoted by ≤. For example: 3 ≤ 5 or 7 ≥ 2.
Observe that the strict “version” of the symbol (<) doesn’t represent an
order as it isn’t reflexive.

With the canonical order we can always compare two number and say which
is greater. This peculiarity doesn’t belong to order relation in general:

Definition 1.1.14
An order relation r ⊆ X ×X is a total order in X if:

(x, y) ∈ r ∨ (y, x) ∈ r ∀x, y ∈ X,

otherwise r is a partial order.

If exists a total order relation in a set X, then X is a totally ordered
set.

The inclusion between sets (⊂) is, for example, a partial order in P(X).
Also the divisibility between two number in N, that is n ⪯ m if n divides
m (m is a multiple of n), is a partial order.

Equivalence relation Like order relation, it exists another kind of binary
relation with wide applications:

Definition 1.1.15
Let X ̸= ∅, r ⊆ X × X is an equivalence relation in X if the
following properties holds (let x, y, z ∈ X):
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• reflexivity:
(x, x) ∈ r;

• symmetry:
(x, y) ∈ r ⇐⇒ (y, x) ∈ r;

• transitivity:

((x, y) ∈ r ∧ (y, z) ∈ r) =⇒ (x, z) ∈ r.

Equivalence relations are denoted by the symbol ∼.

Those properties are similar to the ones of the equality symbol (=), but
while the equality state that two element are the same, an equivalent re-
lation states that two elements are equivalent with respect to a certain
property. Here some examples of equivalent relations:

Example 1.1.16 . Consider the set of all straight lines in a given planes.
Than the parallelism of two lines is an equivalent relation in such set.

Example 1.1.17 . Fix q ∈ N, then

x ∼ y ⇐⇒ ∃ k ∈ Z : x− y = kq

is an equivalence relation in Z.

Example 1.1.18 . The relation

(a, b) ∼ (c, d) ⇐⇒ a+ d = b+ c

is an equivalence relation in N× N.

Example 1.1.19 . The relation

(a, b) ∼ (c, d) ⇐⇒ ad = bc

is an equivalence relation in Z× Z0.

To sum up with all this kind of relations, consider these two proposition
(x, y) ∈ r and (y, x) ∈ r. If r is an order relation then both proposition can
be false at the same time. If r is a total order, the at least one of the two
can be true. If r is an equivalence relation, then they must be both true or
both false.
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Equivalence class We said that an equivalence relation states that two
elements are “equivalent” with respect to a certain property. Now consider
if we need to dived the elements of a set with respect to this kind of equiv-
alence. We would create a partition of our set where in each subset all the
elements are equivalent:

Definition 1.1.20
Consider a set X ̸= ∅ and an equivalence relation ∼ in X ×X.

We define the equivalence class of x on X with respect to ∼ as
follows:

[x] := {y ∈ X : y ∼ x}.

The element x is called the equivalence class representative of [x].

We define the quotient set of X the collection of all the equivalence
classes of X, and we denote as:

X

∼
:= {[x] : x ∈ X}.

Let’s do some considerations from these definition. If an element y ∈ X is
equivalent to x ∈ X, then they are both representative of the same class.
Moreover if y belongs to the equivalence class whose x is the representative,
again x and y are representative of the same class:

x ∼ y =⇒ [x] = [y] , y ∈ [x] =⇒ [x] = [y] .

If two equivalence class aren’t disjoint, then they are the same equivalence
class. If two equivalence class are disjoint, then their representative are not
in the equivalence relation:

[x] ∩ [y] ̸= ∅ =⇒ [x] = [y] , [x] ∩ [y] = ∅ =⇒ x ≁ y

Another trivial result is that the union of all the equivalence class is the set
X, and the elements of the quotient set are a partition of X.

Recalling the previous example:

Example 1.1.21 . Considering [x] as the set of all straight lines parallel to x,
the quotient set X

∼ can be identified as the set of all the possible direction
of the plane.
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Example 1.1.22 . Considering [x] as the congruence class of x modulo q,
fixing for instance q = 5 we have:

Z5 = {[0], [1], [2], [3], [4]}.

Example 1.1.23 . The set of integer numbers can be defined as follows:

Z :=
N× N
∼

.

Example 1.1.24 . Also the correct way to define the rational number set is
through a quotient set:

Q :=
Z× Z0

∼
;

indeed, there exist several representations of the same object: p′

q′ = [(p, q)].

1.1.3 Magnitude and Infinities

Here we provide a quote from Galileo’s “Two New Sciences” in which a
paradox caused by the common idea of infinity set is presented. The char-
acters of this dialogue are: Simplicio, who is the stereotype of scientist of
his period, Salviati, who is the voice of Galileo, and Sagredo, who acts like
a moderator:

Simplicio: Here a difficulty presents itself which appears to me
insoluble. Since it is clear that we may have one line greater
than another, each containing an infinite number of points, we
are forced to admit that, within one and the same class, we
may have something greater than infinity, because the infinity
of points in the long line is greater than the infinity of points
in the short line. This assigning to an infinite quantity a value
greater than infinity is quite beyond my comprehension.
Salviati : This is one of the difficulties which arise when we at-
tempt, with our finite minds, to discuss the infinite, assigning to
it those properties which we give to the finite and limited; but
this I think is wrong, for we cannot speak of infinite quantities
as being the one greater or less than or equal to another. To
prove this I have in mind an argument which, for the sake of
clearness, I shall put in the form of questions to Simplicio who
raised this difficulty. I take it for granted that you know which
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of the numbers are squares and which are not.
Simplicio: I am quite aware that a squared number is one which
results from the multiplication of another number by itself; thus
4, 9, etc., are squared numbers which come from multiplying 2,
3, etc., by themselves.
Salviati : Very well; and you also know that just as the products
are called squares so the factors are called sides or roots; while
on the other hand those numbers which do not consist of two
equal factors are not squares. Therefore if I assert that all num-
bers, including both squares and non-squares, are more than the
squares alone, I shall speak the truth, shall I not?
Simplicio: Most certainly.
Salviati : If I should ask further how many squares there are one
might reply truly that there are as many as the corresponding
number of roots, since every square has its own root and every
root its own square, while no square has more than one root and
no root more than one square.
Simplicio: Precisely so.
Salviati : But if I inquire how many roots there are, it cannot
be denied that there are as many as the numbers because every
number is the root of some square. This being granted, we must
say that there are as many squares as there are numbers because
they are just as numerous as their roots, and all the numbers
are roots. Yet at the outset we said that there are many more
numbers than squares, since the larger portion of them are not
squares. Not only so, but the proportionate number of squares
diminishes as we pass to larger numbers, Thus up to 100 we have
10 squares, that is, the squares constitute 1/10 part of all the
numbers; up to 10000, we find only 1/100 part to be squares;
and up to a million only 1/1000 part; on the other hand in an
infinite number, if one could conceive of such a thing, he would
be forced to admit that there are as many squares as there are
numbers taken all together.
Sagredo: What then must one conclude under these circum-
stances?
Salviati : So far as I see we can only infer that the totality of all
numbers is infinite, that the number of squares is infinite, and
that the number of their roots is infinite; neither is the number
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of squares less than the totality of all the numbers, nor the lat-
ter greater than the former; and finally the attributes “equal”,
“greater”, and “less”, are not applicable to infinite, but only to
finite, quantities. When therefore Simplicio introduces several
lines of different lengths and asks me how it is possible that the
longer ones do not contain more points than the shorter, I an-
swer him that one line does not contain more or less or just as
many points as another, but that each line contains an infinite
number.

Galileo Galilei, Two New Sciences, 1638

Magnitude of sets We introduce some definitions in order to construct a
rigorous classification of sets based on their “largeness”.

Definition 1.1.25
We say that sets X and Y have the same power or are equipotent,
and we write “A ∼ B”, if there exists a bijection f : X → Y .

So when we can establish a one-to-one correspondence between two sets,
these sets have the same power.

Now we pose the problem: how to recognize if a set contains an infinite
number of elements? Well, the answer is exactly the definition of infinite set,
which was provide by Dedekind, like lots of other results in this area:

Definition 1.1.26 (by Dedekind)
A set X is an infinite set if it is equipotent to one or more of its
proper subsets. Otherwise X is called finite.

Notice that if two set are finite, they are equipotent if and only if they have
the same number of elements.

Example 1.1.27 . The set N is infinite, indeed P = {2n : n ∈ N} ⊊ N, and

f : N→ P, f : n 7→ 2n

is a bijection.

Example 1.1.28 . The set R is infinite, indeed

f (x) =
1

π
arctan (x) +

1

2
, x ∈ R, f : R→ (0, 1)
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is a bijection.

Countable and uncountable sets Not all infinite sets contains the “same
number” of elements: there are some infinite sets that are “larger” than
others. Let’s introduce a distinction between infinite sets:

Definition 1.1.29 (by Dedekind)
A set is countable5 if it is equipotent to N or to one of its subsets.
Otherwise, the set is called uncountable.

Then we can say that all finite sets are countable. As we will examine later,
countably infinite sets are the “smallest” kind of infinite set. Indeed, one
can prove the following:

Proposition 1.1.30
Every infinite set contains a countably infinite subset.

Example 1.1.31 . The sets N, Z, Q are countable.

Example 1.1.32 . The set of algebraic numbers A is the set whose elements
are roots of an algebraic polynomial with rational coefficients. This set is
countable; to prove that, notice that countable unions of countable sets are
also countable. See B.0.2 on page 305 for further reading.
Observe that Q ⊊ A, indeed

√
2 ∈ A while

√
2 /∈ Q, it is enough to consider

the polynomial P (x) = x2 − 2.

Example 1.1.33 . The set R is uncountable. This is proved by contradiction:
the proof is known as Cantor’s argument.

Example 1.1.34 . The set R \ A is uncountable. The elements of this set,
such as π and e, are called transcendent numbers.

Cardinal numbers As we understand that exists sets that are bigger than
others and sets that are equal between them, we want to find a label that
represent how big are the set. To do that we have to extend the notion of
natural numbers:

5Italian translation: numerabile.
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Definition 1.1.35
The cardinality of a set X, or its cardinal number, is the equivalence
class of all the sets which are equipotent to X. This is denoted by
m(X), where m stands for magnitude.

If X is finite, them m (X) is identified by the numbers of elements in X.
As the cardinal numbers are a proper extension of the natural number, of
course we are going to see if an ordering is possible also for cardinals.
Now consider two sets, A and B such that either:

• A and B are equipotent: A ∼ B;

• A is in some sense “smaller” than B, that is:

(∃ B̃ ⊂ B : B̃ ∼ A) ∧ (∄Ã ⊂ A : Ã ∼ B)

(that is, it does exists a subset of B that is equipotent to A, but at
the same time it does not exists a subset of A that is equipotent to
A);

in this case we can introduce a partial order in the set of cardinal number
by setting:

m(A) ⪯ m(B).

So we succeed in introducing a partial order, but can we introduce also a
total ordering among the cardinals?

Theorem 1.1.36 (Cantor–Bernstein)
These two propositions hold:

• if (∃ B̃ ⊂ B : B̃ ∼ A) ∧ (∃ Ã ⊂ A : Ã ∼ B), then m (A) = m (B);

• it never happens that (∄B̃ ⊂ B : B̃ ∼ A) ∧ (∄Ã ⊂ A : Ã ∼ B).

The second point is not universal, it depends on which axioms are cho-
sen during the development of the theory. Specifically, to have the second
proposition, we assume the axiom of choice, which will be discussed later
(see definition 1.1.47 on page 31). By using this axiom, we can introduce a
total order among the cardinals, as well as sum and multiplication opera-
tions:

m (A) +m (B) := m (A ∪B) , m (A) ·m (B) := m (A×B) .
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Those operation are associative and commutative.

There is not an upper limit to the cardinal numbers, as there is not a “largest
set”: this because whatever set do you consider, its power set has a greater
cardinality. This was proved by Cantor (see proposition 1.1.38):

Theorem 1.1.37 (Cantor)
For any set X:

m (X) ⪯ m (P (X)) and m(X) ̸= m(P(X)).

It can be proven that:

Proposition 1.1.38
Let X be a set. The magnitude of P(X) is 2m(X):

m(P(X)) = 2m(X).

Magnitude of N We are now going to discuss the magnitude of two impor-
tant numerical sets: the set of natural numbers and the set of real numbers.
The “smallest” kind of infinite belongs to the set N and has an appropriate
name:

Definition 1.1.39
The magnitude of the set of natural numbers is called aleph-zero:

ℵ0 := m(N).

As we said before, it does always exists a larger set: it can be proven that
the set of real numbers is equipotent to the power set of natural numbers,
see proposition 1.1.40.

Magnitude of R Also the cardinality of the set of real numbers has its
own symbol, first acknowledge this concept.

Proposition 1.1.40
The set or real numbers is equipotent to the power set of natural

27



numbers:
R ∼ P(N).

Proof. We have to prove that |P(N)| = |R|.

Proof of |R| = |(0, 1)|:
To prove this is sufficient considering the following bijective function and
its inverse:

f(x) =
1

π
arctanx+

1

2
f−1(x) = tan(π(x− 1

2
)).

Proof of |(0, 1)| = |[0, 1]|:
See proposition 1.1.42 on the facing page for the general case.

Proof of |[0, 1]| = |P(N)|:
Consider x ∈ [0, 1], it’s binary expression is the following:

z =

∞∑
k=1

αk
1

2k

where αk ∈ {0, 1} ∀k.
To determine αk we divide [0, 1] into 2k intervals of length 1

2k
:

I1(k) =

[
0,

1

2k

)
, I

(k)
2 =

[
1

2k
,
2

2k

)
· · · I(k)j =

[
j − 1

2k
,
j

2k

)
· · · I(k)

2k
=

[
2k − 1

2k
, 1

)
So it exists a unique j such that x ∈ I

(k)
j and we choose αk = 0 if j is odd

or αk = 1 if j is even.
Now we define the map:

f : [0, 1] → P(N)
x 7→ A = {n ∈ N : αn = 1}

and this is a bijection that ends the proof. ■

So the set of real numbers is far more larger than the set of natural numbers,
they are not equipotent and so R is not countable. The following is the
definition of its cardinality.
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Definition 1.1.41
The magnitude the set of real numbers is called continuum:

c := m(R) = 2ℵ0 .

Now, due to Cantor theorem, there will be a more “powerful” infinite than
the continuum, consider the magnitude of P(R). An interesting question
is about the existence of an “intermediate” infinite between ℵ0 and the
continuum. We will see the answer to this question later.

Proposition 1.1.42
Let a, b ∈ R, with a < b. Then:

[a, b] ∼ (a, b) ∼ [a, b) ∼ (a, b] .

In general, it is not easy to construct a bijection between an open and a
closed set. Indeed, it would not be continuous, as continuous functions are
the ones which map open sets into open sets.

Ordinal numbers With cardinal number we labeled set according to how
“big” they are. Now we want to label set according also to their order.

Definition 1.1.43
Let A, B be two totally ordered sets: (A,≤), (B,⪯).
We say that these sets have the same order or type if there is a
bijection f : A → B which preserves order, namely:

∀x, y ∈ A, x ≤ y =⇒ f(x) ⪯ f(y).

If A and B have the same order, by definition they also have the same
power. In general, the converse is not true. For instance, N can be totally
ordered in an uncountable number of ways: if we choose A = B = N but
two different total orders, A and B have obviously the same power, but an
appropriate f does not exist.

Definition 1.1.44
Let A be a totally ordered set.
We say that A is well-ordered if any non-empty subset of A has a
minimum.
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For example, N is well-ordered with respect to its canonical order: we can
find a minimum for each of its subsets. Instead, Z is not well-ordered with
respect to its canonical order: for example, any half-line such as {z ≤ 2 :
z ∈ Z} has no minimum.

We will now introduce the concept of ordinal numbers, as we did with
cardinals.

Definition 1.1.45
An ordinal number is a equivalence class of well-ordered sets with
the same order.

As for cardinals, if a well-ordered set is finite then its ordinal can be iden-
tified with the number of its element.

The difference between cardinal numbers and ordinals is the same as the
difference between “one, two, three ...” and “first, second, third ...”.

Ordinal numbers of infinite well-ordered sets are called transfinite. The
transfinite associated to (N,⪯canonical) is called ω.

How to define a total order among the ordinals? It’s sufficient, among
well-ordered set, to compare their cardinal numbers. If two sets A and
B are well-ordered, then we can compare m(A) and m(B): then either
m(A) ⪯ m(B) or m(B) ⪯ m(A); now consider A and B as representatives
of their respective equivalence classes, and introduce an order for ordinals
based on the cardinality of those representatives.

We could introduce the operations of sum and multiplication among ordi-
nals, but unlike cardinals, they would not be commutative.

Having find a total order for ordinals by comparing them with the cardinal
and, in a certain sense, using the total order among the cardinal to obtain a
total order for the ordinals, we now must remember that this was possible
only if we include the axiom of choice in our theory (see theorem 1.1.36 on
page 26). Indeed there is a theorem that closes the circle, and this theorem
need that axiom to be proved:

Theorem 1.1.46 (Zermelo)
Any set can be well ordered.
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Extension of R The set of real numbers can be extended to include the
infinities;

R⋆ := R ∪ {−∞,+∞};

in this case, the conventional extension of the arithmetization is as follows,
considering a ∈ R:

a+∞ = +∞+ a = +∞ 0 ·+∞ = 0 a ·+∞ = +∞if a > 0

the multiplication’s sign rule holds also in this cases.

1.1.4 Main results of the axiomatic theory

In our introduction we gave a taste of how deep is the theory behind set
theory. Now, as this theory play a role in the fundamentals of analysis
we now shows some details of those axioms which allow us to reach useful
results.

Here we will present the aforementioned axiom of choice.

Definition 1.1.47 (Axiom of choice - AC)
There are different but equivalent formulation for the axiom:

• For any X ̸= ∅ there exists a choice function f : P(X) → X,
f : A 7→ f(A) ∈ A for any A ̸= ∅;

• Let (Eα)α∈A be a family of non-empty sets Eα, indexed by an
index set A. then we can find a family (xα)α∈A of elements xα
of Eα, indexed by the same set A; 6

• Any cartesian product of a family on non-empty sets is non-
empty: let χ = {Xα}α∈J be a family of sets indexed by a set
J ̸= ∅. The cartesian product

∏
α∈J Xα is the defined as the set

of all mappings x : J → ∪α∈IXα such that x(α) ∈ Xα for each
α ∈ J . Each mapping x is defined as choice mapping and x(α) is
defined as αth coordinate of x. Then if Xα ̸= ∅ for each α ∈ J
then

∏
α∈J Xα ̸= ∅;

• Any member of a family of non-empty sets has at least one ele-
ment.

6See: T. Tao, An introduction to Measure Theory, page XV, notation, axiom 0.0.4 .
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This axiom means that it is always possible to choose one element in each
set of a collection of sets through a so-called choice function.

The family is assumed to be non-countable; if it is just countable, a weaker
version of the axiom, known as the countable axiom of choice (CAC),
holds.

One interesting consequence arising from the axiom of choice is the follow-
ing.

Proposition 1.1.48 (Banach–Tarski paradox)
Given a solid ball in 3-dimensional space, there exists a decompo-
sition of the ball into a finite number of disjoint subsets, which can
then be put back together in a different way to yield two identical
copies of the original ball.

Despite the existence of this paradox, the axiom of choice is essential to
prove even some of the most basic calculus theorems.

Equivalent axioms Other axioms can be take instead axiom of choice,
and some of those has been proved to be equivalent: here we present two
of those after having introduced some definitions.

Definition 1.1.49
Let X,⪯ be a partially ordered set. His subset A ⊂ X is called
chain if it’s a totally ordered set.

A chain is maximal if it’s not properly contained in another chain.

An element b of a partially ordered set (X,⪯) is an upper bound
for A ⊂ X if a ⪯ b for all a ∈ A.

A partially ordered set (X,⪯) is an inductive set if every chain has
an upper bound.

Proposition 1.1.50 (Hausdorff’s maximal principle)
Every chain in a partially ordered set is contained in a maximal
chain.

Proposition 1.1.51 (Zorn’s lemma)
Any inductive set has a maximal element.
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The Zermelo–Fraenkel theory and the axiom of choice Ernst Zermelo
demonstrated in 1904 that every set can be well-ordered if we assume the
axiom of choice. In fact, AC is independent from ZF axioms: Kurt Gödel
proved that the negation of AC isn’t deducible form ZF in 1938 while Paul
Cohen, in 1963, proved that AC neither can be deduced from ZF.

From now on two (different) theories are possibles: the Zermelo–Fraenkel
theory with AC (ZFC), in which cardinal numbers has a total order and it
is possible to prove a number of important results even if there exist some
counter-intuitive results, and the Zermelo–Fraenkel theory without AC. In
this last case one can include only the countable axiom of choice and lots
of results can be proved anyway.

The continuum hypothesis Remembering the ordinal number theory, we
can assign to who particular transfinite ordinal two specific symbols. The
least transfinite ordinal is ω and we denote its cardinality with ℵ0. The first
transfinite uncountable ordinal, that is the set of all countable ordinals, has
its cardinality denoted by ℵ1. Those set are themselves ordinals, in the
sense that they are representatives from their equivalence classes.

Definition 1.1.52 (Continuum hypothesis (CH))
The continuum has the same cardinality of the first transfinite un-
countable ordinal, namely:

2ℵ0 = ℵ1

So, this states that there is not an “intermediate” magnitude of infinities
between the cardinality of N and the cardinality of R (see definition 1.1.39
on page 27).

As for the axiom of choice, in 1940 Kurt Gödel proved that the negation
of the CH is not a theorem in ZFC while in 1963 Paul Cohen showed that
CF is not a theorem in ZFC; so the CH is another optional axiom of the
ZF.

From now on, we will use ZF + AC + CH as our reference theory.
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1.2 Topology

With the study of topology we can obtain many useful tools to develop our
theory. First we will define the notion of metrical space and we will compare
it with the notion of topological spaces.

1.2.1 Metric spaces

First we need to deal with the concept of distance: we have to obtain an
abstract tool to quantify how close are two elements of the same set:

Definition 1.2.1
Let X be a non-empty set.
A function d : X ×X → [0,+∞) is called distance or metric on X
if ∀x, y, z ∈ X these properties hold:

• non-negativity:
d(x, y) ≥ 0;

• identity of indiscernibles:7

d(x, y) = 0 ⇐⇒ y = x;

• symmetry:
d(x, y) = d(y, x);

• triangle inequality or subadditivity:

d(x, y) ≤ d(x, z) + d(z, y).

Observe that for this definition we had no need of an algebraic structure
on X. It is possible to define multiple distances on the same set. Here we
present some broadly-used distances.

Example 1.2.2 . On a generic non-empty set X we can define the discrete
distance as follows:

d (x, y) =

{
0 if x = y

1 if x ̸= y
.

7Italian translation: annullamento.
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Example 1.2.3 . On RN we can define the euclidean distance:

de(x, y) =

√√√√ n∑
i=1

(xi − yi)2

which is a particular case of the following (p = 2):

dp(x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

.

For exercise check that de is a distance.8

Example 1.2.4 . From the previous formula, with particular values of p, other
metric can be defined:

d1(x, y) =
n∑

i=1

|xi − yi|, d∞(x, y) = max
i=1,...,n

|xi − yi|.

Considering a set with a metric we get a powerful environment on which
we can build useful tools:

Definition 1.2.5
If d is a distance on X ̸= ∅, then the couple (X, d) is called metric
space.

Open balls or spherical neighbourhood are the sets that contain all points
which are “close” from a given point. The geometry of those balls depends
on the metric considered.

Definition 1.2.6
Let (X, d) a metric space, x0 ∈ X and r > 0.
The open ball or spherical neighbourhood of center x0 and radius
r is defined as:

Bd (x0, r) := {x ∈ X : d (x, x0) < r}

8Use Cauchy–Schwarz inequality:
∑n

k=1 |akbk| ≤
(∑n

k=1 a
2
k

) 1
2
(∑n

k=1 b
2
k

) 1
2

35



Clearly different distances will produce differently shaped balls in RN (see
figure 1.1):

p = 1
2 p = 1 p = 2 p = ∞

Figure 1.1: balls in different distances on R2

Example 1.2.7 . Let d be the discrete metric on X. Then we have:

Bd (x0, r) =

{
{x0} if r ≤ 1

X if r > 1
.

On function spaces distances and neighborhoods can be defined, consider
X = C0 ([a, b]) and these two possible distances:

d1 (f, g) :=

∫ b

a
|f (x)− g (x) |dx, d∞ (f, g) := max

x∈[a,b]
|f (x)− g (x) |.

These two metrics generate very different neighborhoods (see figure 1.2 on
the facing page):

• Bd1(f,r) is the set of functions in X subject to
∫ b
a |f − g| < r;

• Bd∞(f,r) is instead the set of functions in X whose graphs is contained
in a “strip” around f .

Metrics equivalence What differences are there between a distance and
another? Some times two distances are very “similar” each other:

Definition 1.2.8
Let X ̸= ∅ and d and δ two different metrics on X.
We say that d and δ are equivalent if there exist c1 and c2 > 0 such
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(a) d1 (b) d∞

Figure 1.2: spherical neighbourhoods in different distances on C0

that:
c1δ (x, y) ≤ d (x, y) ≤ c2δ (x, y) ∀x, y ∈ X

Consider now two equivalent metrics, namely d and δ, observe that:

y ∈ Bd (x, y) =⇒ d (x, y) < r =⇒ δ (x, y) <
r

c1

=⇒ y ∈ Bδ

(
x,

r

c1

)
∀x ∈ X ∀r > 0

In the same way we have: y ∈ Bδ (x, y) =⇒ y ∈ Bd (x, r c2): the open
balls with respect to d and δ, and of two equivalent metrics in general, are
nested one inside another.

Example 1.2.9 . Now we prove that d1, de, d∞ on RN are equivalent:

d∞(x, y) = max
k=1,...,n

|xk − yk| = |xk̄ − yk̄|

=

√
(xk̄ − yk̄)

2 ≤

√√√√ n∑
k=1

(xk − yk)
2 = de (x, y)

Now remember that if a1, . . . , an ≥ 0 then a21 + · · ·+ a2n ≤ (a1 + · · ·+ an)
2:

de (x, y) =

(
n∑

k=1

(xk − yk)
2

) 1
2

≤

( n∑
k=1

|xk − yk|

)2
 1

2

= d1 (x, y)
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Then we just need to prove that d1 ≤ c1 d∞:

d1 (x, y) =
n∑

k=1

|xk − yk| ≤
n∑

k=1

max
i=1,...,n

|xi − yi| = n · d∞ (x, y)

In the end we have d∞(x, y) ≤ de(x, y) ≤ d1(x, y) ≤ c1d∞(x, y), and the
thesis is proven.

Example 1.2.10 . The distances d1 and d∞ on the space C0([a, b]) are not
equivalent. Indeed the distance d1 can be controlled by the distance d∞:

d1 (f, g) =

∫ b

a
|f (x)− g (x) |dx ≤

∫ b

a
d∞ (f, g) dx = d∞ (f, g) (b− a)

However d∞ cannot be controlled by d1: let us prove that with a counterex-
ample. Take [a, b] = [0, 1] and define fn as follows:

fn (x) =

{
n− n2x if x ∈

[
0, 1

n

]
0 if x ∈

[
1
n , 1
]
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0
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Then we have:

d1 (fn, 0) =

∫ 1
n

0

(
n− n2x

)
dx =

[
nx− n2x2

2

] 1
n

0

= 1− 1

2
=

1

2
,

and
d∞(fn, 0) = n.

Hence, there is no c > 0 such that d∞ (fn, 0) ≤ c · d1 (fn, 0) for any n.
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1.2.2 Topological structure and sequences on metric spaces

Thanks to the notion of metric and the definition of balls we can now build
a topological structure on metric spaces:

Definition 1.2.11
Let (X, d) be a metric space, A ⊂ X, x0 ∈ X. We say that:

• x0 is an interior point of A if there exists r > 0:

Br (x0) ⊂ A;

• x0 is an exterior point of A if there exists r > 0:

Br (x0) ⊂ (X \A) = AC;

• x0 is a boundary point of A if it is neither interior nor exterior;

• x0 is a adherent point of A if for all r > 0:

Br (x) ∩A ̸= ∅

so any point of A is an adherence point of A;

• x0 is an accumulation point (or limit point or cluster point) of
A if for all r > 0 exists xn:

xn ∈ {Br(x0) ∩A} \ {x0};

• x0 is an isolated point of A if:

x0 ∈ A and ∃ r > 0 : Br (x0) ∩A = {x0}.

Moreover, the set of each “kind” of point can be identified with a proper
name:

Definition 1.2.12
Let (X, d) be a metric space, A ⊂ X, x0 ∈ X, than:

• the interior set of A is defined as:

Å = int (A) := {x0 ∈ A : x0 is an interior point of A};
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• the exterior set of A is defined as:

ext (A) := {x0 ∈ A : x0 is an exterior point of A};

• the boundary of A is defined as:

∂A := {x0 ∈ A : x0 is a boundary point of A};

• the closure of A is defined as:

Ā := {x0 ∈ A : x0 is an adherent point of A};

• the derived set of A is defined as:

A′ := {x0 ∈ X : x0 is an accumulation point of A}.

This allow us to specify whether a set is open or closed:

Definition 1.2.13
The set A is open if A = Å; that is every x ∈ A is an interior point.
The set A is closed if X \A (or AC) is open.

With these new concepts we can extend the notion of disjoint sets (see
definition 1.1.2 on page 11):

Definition 1.2.14
We say that two sets, A and B, are almost disjoint, or disjoint
except for boundaries, if

Å ∩ B̊ = ∅.

Now we highlight some basic properties.

Proposition 1.2.15 (Topological properties of sets)
Let A ⊂ X, then:

• the sets Å, ∂A and ext (A) are a partition of X;

• A is open ⇐⇒ A = Å ⇐⇒ A ∩ ∂A = ∅;

• Ā = A ∪ ∂A = Å ∪ ∂A;
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• A is closed ⇐⇒ A = Ā ⇐⇒ ∂A ⊆ A;

• A′ = Ā \ {isolated points of A};

• Å is the largest open set containing A;

• Ā is the smallest closed subset of X containing A.

Proposition 1.2.16 (Topological property for family of sets)
Now, let I be a family of indexes of any cardinality (countable or
uncountable) and {Aj}j∈I ⊂ P(X) and m ∈ I:

• if Aj is a open set ∀j ∈ I, then
⋃

j∈I Aj is open;

• if A1, . . . , Am are open sets, then
⋂m

j=1Aj is open;

• if Aj is a closed set ∀j ∈ I, then
⋂

j∈I Aj is closed;

• if A1, . . . , Am are closed sets, then
⋃m

j=1Aj is closed.

So uncountable union of open set is an open set while uncountable inter-
section of closed set is a closed set.
Notice that the first two properties are the complementary to the last two
due to De Morgan’s law.

Sequences in metric spaces Much of the previous definition about dis-
tances allow us to study the sequences defined in metric spaces, in particular
we now discuss about their convergence. A sequence is, formally, a function
which domain is N (see definition 1.1.7 on page 16). In a less formal lan-
guage, a sequence can be considered an ordered set of elements which are
indexed on N. We will denote a sequence as follows:

{xn}n∈N.

During theory deployment we will be interested in discover the behavior of
a given sequence, for example if it converges or not. Here we start crafting
tools useful for such goal.

Definition 1.2.17
Let (X, d) be a metric space, {xn} be a sequence in X, x⋆ ∈ X.
Then the limit of the sequence {xn} is x⋆, namely xn → x⋆, as
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n → ∞ if:

∀ε > 0 ∃ n̄ = n̄ (ε) : n > n̄ =⇒ d (xn, x
⋆) < ε

or, equivalently using open balls:

∀ε > 0 ∃ n̄ = n̄ (ε) : n > n̄ =⇒ xn ∈ Bε (x
⋆) .

When such limit does exist, then the sequence is said to be conver-
gent.

From this definition comes three remarks: first, the limit is unique and
any sub-sequence {xnk

} converges to the same limit: to prove this use the
triangular inequality and the identity of indiscernibles. Second, considering
two different but equivalent metrics the limit is the same, namely let d1, d2
be equivalent distances on set X, then xn

d1−→ x∗ ⇐⇒ xn
d2−→ x∗. Third,

there is a relation between a set and the sequences which it contains, in
particular we have the following theorem:

Theorem 1.2.18 (theorem closure in metric spaces)
Let (X, d) be a metric space and consider A ⊂ X.
The subset A is closed if and only if, for any sequence {xn} ⊂ A,
we have that:

xn → x =⇒ x ∈ A.

This theorem provides a characterization for closedness in metric space.
The condition highlighted is known as sequentially closedness and in case
of metric space is completely equivalent to the closedness (see definition
1.2.55 on page 57, and following results). We will see that this is not true
for topological spaces.

Necessary condition ( =⇒ ). :
Having that A is closed and any sequence {xn} such that xn → x, we have
to prove that x ∈ A.
By contradiction assume that x ∈ (X \A), which is open by definition.
Then, it exist r > 0 such that Br (x) ⊂ (X \A) and, equivalently, Br (x) ∩
A = ∅.
By definition 1.2.17 on the preceding page we can choose a point from the
sequence which is arbitrarily close d to x, but for all n we have xn /∈ Br (x),
so we have a contradiction.
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Sufficient condition ( ⇐= ):
By hypothesis we have that any sequence {xn}n∈N converges to x which is
a point of A. Choose x ∈ Ā; we will prove that x ∈ A.
Consider B 1

n
(x), by definition of adherence point we can choose a sequence

{xn} ⊂ A such that:

∀n ∃xn ∈
(
A ∩B 1

n
(x)
)
.

Notice that d (xn, x) <
1
n → 0, and so xn → x. Having choose xn ∈ A we

have, by hypothesis, that x ∈ A.
Thus A = Ā and A is closed. ■

Having considered “all the possible sequences included in a set”, the following
definition make sense:

Definition 1.2.19
The sequence closure of a set X is:

{x ∈ X : ∃ {xn} ∈ X : xn → x in (X, d)}

Bolzano–Weierstrass Here we state a very useful result on which we will
return to in next chapters.

Theorem 1.2.20 (Bolzano–Weierstrass)
Consider a metric space given by RN coupled with any metric.
Any bounded sequence contains at least one convergent subsequence.

This theorem states that when working on RN , having defined any metric,
if we have any bounded sequence {xn}n∈N it is always possible extract a
subset of its elements obtaining a subsequence {xnh

}h∈N which is convergent
in the metric space. Note the convention of indexes and subindexes.

1.2.3 Topological spaces

Here we try a different approach to deal with “closedness”: alongside metric
spaces we define the topological spaces from which we will obtain similar
results.
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Definition 1.2.21
Let x ̸= ∅ and τ ⊆ P(X).
We say that τ is a topology if:

• it contains the set itself and the empty set:

X ∈ τ, ∅ ∈ τ ;

• it is closed with respect to finite intersections:

A,B ∈ τ =⇒ A ∩B ∈ τ ;

• it is closed with respect to uncountable unions:

{Ai}i∈I ⊂ τ =⇒
⋃
i∈I

Ai ∈ τ.

In this case, we also say that (X, τ) is a topological space.
Moreover, we call open sets each set belonging to τ .

As we see, this definition also contains the notion of openness, and here is
generalized (see definition 1.2.13 on page 40 for the definition of open set
in metric spaces). Anyway, there exists a link between metric spaces and
topological spaces:

Definition 1.2.22
Let (X, d) be a metric space.
We define the topology induced by the distance d as follows:

τ = {A ⊂ X : A is open with respect to d}.

We can prove that two metric spaces (X, d1) and (X, d2), with d1 equiv-
alent to d2 (see definition 1.2.8 on page 36), produce the same topology;
this result is obtainable using the characterization of the closure in metric
spaces.

As we define the open set as the set belonging to the topology, closed sets
are the sets whose complement are open, namely A ⊂ X is closed if X \ A
is open (X \A ∈ τ).
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We can also identify a topological space by considering its closed subsets
instead of the open ones. This is possible by the De Morgan’s law (see sec-
tion 1.1.1 on page 13) which allow us to define the dual properties. Consider
C as the collection of all the closed subsets of X, then if satisfy the dual
properties, which are:

X,∅, X ∈ C; C,D ∈ C =⇒ C∪D ∈ C; {Di} family of C =⇒ ∩iDi ∈ C;

then the family of the complements {fC : f ∈ C} is a topology.

Observe that ∅ and X are both open and closed.

Consider now some examples: if X ̸= ∅, τ = P(X) is the topology associ-
ated with the discrete metric (indeed, all the set are open with respect to this
metric), while τ = {∅, X} is called the trivial topology; let X = {1, . . . , 4}:
a possible topology of X is given by τ = {∅, X, {1}, {2, 3}, {1, 2, 3}}.

1.2.4 Topological structure of topological spaces

As we have done for metric spaces, also for topological spaces we can define
a topological structure (see definition 1.2.11 on page 39 for a comparison):

Definition 1.2.23
Let (X, τ) be a topological space, A ⊂ X, x0 ∈ X. We say that:

• U is an open neighborhood of x0 if:

U ∈ τ and x0 ∈ U ;

• x0 is an interior point of A if:

∃U ∈ τ such that x0 ∈ U ⊆ A;

• x0 is an exterior point of A if it is interior to X \A, namely:

∃U ∈ τ such that x0 ∈ U ⊆ (X \A);

• x0 is a boundary point of A if it is neither interior nor exterior;
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• x0 is an adherent point of A if:

∀U ∈ τ, x0 ∈ U =⇒ A ∩ U ̸= ∅;

• x0 is an accumulation point of A if:

∀U ∈ τ, x0 ∈ U =⇒ (A ∩ U) \ {x0} ≠ ∅;

• x0 is an isolated point of A if:

x0 ∈ A and x0 is not an accumulation point.

The notions of interior set (Å), exterior set (ext(A)), boundary set (∂A),
closure set (Ā) and derived set (A′) are the same as for metric spaces,
given this topological structure (see definition 1.2.12 on page 39). Also
their properties still hold (see propositions 1.2.15 on page 40 and 1.2.16 on
page 41).

Base of topological spaces The base of a topological space describes the
space in its whole. It is a family of sets for which any set of the topological
space can be expressed as an intersection of those.

Definition 1.2.24
Let (X, τ) be a topological space.
We say that B ⊂ P(X) is a base for (X, τ) if for every A ∈ τ it
exists a collection of sets {Bi}i∈I ⊂ B such that A = ∩i∈I Bi.
Indexes set I can be either finite, countable or uncountable.

Moreover, let x ∈ X. We say that a family N (x) ⊂ P(X) is a local
base of (X, τ) at x if for every open neighborhood A of x it exists
a set B ∈ N (x) such that x ∈ B, B ⊂ A.

Considering a metric space (X, d) and the topology induced by the metric:
then a local base at x is the set of all open balls centered in x: N (x) =
{Br(x) : r > 0}. The union of these local bases is a base: B = {Br(x) : x ∈
X, r > 0}.

Topological subspace Can we build a topology for the subsets of X?
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Definition 1.2.25
Let (X, τ) be a topological space, and let S be a non-empty subset
of X.
On S it is naturally defined the topology induced by τ as

σ := {B ⊂ S : B = S ∩A where A ∈ τ}.

It’s easy to prove that (S, σ) is a topological space.

Moreover if B = {Bn}n∈I is a base for τ , then B′ = {Bn ∩ S}n∈I is a base
for σ.

Example 1.2.26 . Let (RN , τ) be a topological space with a topology induced
by the euclidean metric de, and S =�B1(0). Then Br(x) ∩ S is open in the
induced topology of S even if it is not open as a subset of RN .

0 1

x

Separation axioms We have already seen in 1.2.22 on page 44 how to
build a topological space from a metric space. Under which conditions can
we do the opposite, namely construct a distance coherent with the given
topology?

Definition 1.2.27
A topological space (X, τ) is called first countable if for any x ∈ X
it exists a local countable base W(x), and second countable if it
exists a countable base B for τ so that |B| = |N| = ℵ0.

Metric spaces are always first countable with respect to the topology in-
duced by the euclidean distance, but not always second countable: for ex-
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ample consider a space made of an uncountable number of isolated points.
We can prove that (RN , de) is second countable: see proposition 1.2.38 on
page 51.

Definition 1.2.28
A topological space (X, τ) is said to satisfy the Tychonoff property9

if:

∀x, y ∈ X, ∃U, V ∈ τ : x ∈ U, y /∈ U, y ∈ V, x /∈ V.

Definition 1.2.29
A topological space (X, τ) is called Hausdorff space if for all x, y ∈
X, with x ̸= y, it exists a pair U, V of open sets such that x ∈ U ,
y ∈ V , U ∩ V = ∅.

Proposition 1.2.30
Any metric space is a Hausdorff space.

Proof. Let x ̸= y, ρ := d(x, y). Then x ∈ U := Bρ/4(x), y ∈ V := Bρ/4(y).
By definition of ball, U ∩V = ∅, so the pair U, V satisfies the requirements
of the definition of Hausdorff spaces. ■

An example of a topological space which is not Hausdorff is (X, τ0) with
τ0 = {∅, X} (see proof of proposition 1.2.34 on the facing page). Another
example is the following:

Example 1.2.31 . Consider X ̸= ∅ with infinitely many elements, and con-
sider the following topology: τ = {A ⊂ X : A = ∅ ∨AC is finite}; (X, τ) is
a topological space.

Now we show that it is not an Hausdorff space.

Consider x, y ∈ X, x ̸= y. Suppose by contradiction that (X, τ) is an
Hausdorff space, then exists U, V ∈ τ such that x ∈ U , y ∈ V and U ∩ V =
∅.

Since U ∈ τ then UC is finite. For the same reason, V C is finite. So we
have:

UC ∪ V C = (X \ U) ∪ (X \ V ) = X \ (U ∩ V ) = X \∅ = X

9This property is referenced with “T1”.
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But, as X is infinite it can’t be a union of two finite set, then we have a
contradiction.

Definition 1.2.32
(X, τ) is called normal space if, for any pair A,B of closed disjoint
sets, it exists a pair U, V of open sets such that A ⊂ U , B ⊂ V ,
U ∩ V = ∅.

Theorem 1.2.33 (Urysohn’s metrization theorem)
Let (X, τ) be a second countable topological space.
It is metrizable if and only if it is a Hausdorff, normal space.

This result is said to be the first non-trivial theorem in topology.

A comparison between a metric space and the inducted topological
space In general we have the following result:

Proposition 1.2.34
Consider a metric space (X, d) and the topological space (X, τ)
which topology is inducted by the distance d, then:

Metric space (X, d) ⊊ Topological space (X, τ).

For example consider a topological space whose topology is not inducted by
any distance, like (X, τ0) where X ̸= ∅ and τ = ∅, X which is the trivial
topology. If X contains at least two elements, then τ0 is not induced by any
distance.

Proof. Suppose by contradiction that exists a distance d on X such that:
τd = {open sets of X according to the metric d} = τ0 = {∅, X}.

Let x,y ∈ X such that x ̸= y, then d(x, y) = k > 0.

We can consider Bd(x,
k
2 ) and Bd(y,

k
2 ).

Both of these balls are non-empty and Bd(x,
k
2 ) ∩Bd(y,

k
2 ) = ∅.

Since they are open and non-empty, the only non-empty open set in τ0 is
X, so Bd(x,

k
2 ) = Bd(y,

k
2 ) = X, so their intersection can’t be empty. ■
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Sequences in topological spaces As we defined a limit for sequences in
metric spaces using their topological structure we can define a notion of
limit using the topological structure of the topological spaces:

Definition 1.2.35
Let (X, τ) be a topological space, {xn} be a sequence in X, x⋆ ∈ X,
U ⊂ X a neighborhood of x.
Then the limit of the sequence {xn} is x⋆, namely xn → x⋆, as
n → ∞ if:

∀U ∈ τ : x∗ ∈ U ∃ n̄ = n̄(U) : ∀n > n̄ =⇒ xn ∈ U

When such limit does exist, then the sequence is said to be conver-
gent.

In general, limits defined this way are not unique.

Example 1.2.36 . Let X := {1, 2, 3, 4}, τ := {∅, X, {1}, {2, 3}, {1, 2, 3}},
xn = 3 ∀n.
The sequence {xn}, by definition, converges to 3 but also to 2: in fact, every
open set containing 2 also contains 3.

Proposition 1.2.37
If (X, τ) is a Hausdorff space, then the limit of any sequence is
unique.

In general the converse is not true, consider for instance the non-Hausdorff
topological space (X, τ0) with τ0 = {∅, X}: we can show that if {xn} is a
sequence in X then it converges to any element x⋆ ∈ X, indeed the only
neighborhood of a point x⋆ is the whole X.

Topological results on R The base for the R canonical topology (the
topology induced by the euclidean distance dE) can be generated by

{(x0 − δ, x0 + δ)x0,δ∈R δ>0}.

A base for the canonical topology of R⋆ is generate by

{{[−∞, s)s∈R}, {(x0 − δ, x0 + δ)x0,δ∈R δ>0}, {(r,+∞]r∈R}}.
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Proposition 1.2.38
The topological spaces (R, τE) and (RN , τE), where τE is the topol-
ogy induced by the euclidean distance dE , are second countable.

This because we can choose as base for the induced topology the family of
open balls with rational radii10 and center with rational coordinates. See
definition 1.2.27 on page 47 for second countable.

1.2.5 Limits and continuity for functions

With the tools that we have been developed, now we face the definition of
a notion of continuity for functions (recall the definition 1.1.7 on page 16).
A general notion for continuous functions is the following:

Definition 1.2.39
A function said to be is continuous if it transforms open sets into
open sets.

A formal definition need to specify on which structure we are working, for
which we develop the two different cases in the followings; as we are going to
see, the definition of limits differs and the definition of continuity is strictly
related to the definition of limit. For metric spaces see theorem 1.2.46 on
page 54, for topological spaces see theorem 1.2.51 on page 55. We could also
equivalently define continuous functions as the ones mapping closed sets in
closed sets, but using open sets theory is simpler.

Limits and continuity for functions in metric spaces First, we develop
and study the continuity in the context of metric spaces. The following
definition is similar to 1.2.17 on page 41 where we defined the limit for
sequences, now we extend that definition to functions in general.

Definition 1.2.40
Let (X, dX), (Y, dY ) be metric spaces and consider a function f :
X → Y .
Then the limit of f(x) is y0, namely f(x) → y0, as x → x0, with x0
accumulation point for X, if:

∀ε > 0 ∃ δ = δ(x0, ε) > 0 : dX(x, x0) < δ =⇒ dY (f(x), y0) < ε

10Radii is the plural of radius, as it is a latin word.
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or, equivalently using open balls:

∀ε > 0 ∃ δ = δ(x0, ε) > 0 : f(BdX (x0, δ) \ {x0}) ⊂ BdY (y0, ε).

When such limit does exist, then we say that the function converges
to y0 in x0, using the following notation:

lim
x→x0

f(x) = y0.

As for sequences, the limit, if exists, is unique.

Now we can provide the “classical” definition of continuous function:

Definition 1.2.41
Let (X, dX), (Y, dY ) be metric spaces and consider a function f :
X → Y .

We say that f if continuous in x0 if one of the following condition
is satisfied:

• x0 is an accumulation point of X and f(x) → f(x0) as x → x0;

• x0 is an isolated point for X.

We say that f is continuous in a set D ∈ X if it is continuous in
every point of D.

A stronger version of continuity is the following:

Definition 1.2.42
Let (X, dX), (Y, dY ) be metric spaces and consider a function f :
X → Y .
We say that f is uniformly continuous in D ⊂ X if:

∀ε > 0 ∃ δ = δ(ε) > 0 ∀x, y ∈ D : dX(x, x0) < δ =⇒ dY (f(x), f(y)) < ε.

Notice that in this definition δ does not depend on x, but only on ε.

Proposition 1.2.43
Let (X, dX), (Y, dY ) be metric spaces and consider a function f :
X → Y .
If f is uniformly continuous in D, then f is continuous in D. The
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converse isn’t true in general.

The following is a particular definition of continuity that occurs when func-
tions converges like sequences in their domain:

Definition 1.2.44
Let (X, dX), (Y, dY ) be metric spaces and consider a function f :
X → Y .
We say that f is sequentially continuous in x0 if:

∀{xn} ⊂ X xn → x0 =⇒ f(xn) → f(x0).

Proposition 1.2.45
Let (X, dX), (Y, dY ) be metric spaces and consider a function f :
X → Y .
The function f is continuous in x0 if and only if f is sequentially
continuous in x0.

Proof. If x0 is an isolated point the thesis is trivial. Otherwise, let x0 be
an accumulation point.

Necessary condition =⇒ :
Consider a sequence {xn} ⊆ X such that xn → x0 and fix ε > 0.

We gain two consequences, f is continuous at x0, namely:

∀ε > 0 ∃ δ > 0 : 0 < dX(xn, x0) < δ =⇒ dY (f(x), f(x0)) < ε

and that xn converges to x, namely:

∃ n̄ > 0 : ∀n > n̄ =⇒ dX(xn, x0) < δ.

Then if n > n̄ we have dY (f(xn), f(x0)) < ε, that is f(xn) → f(x0): this
prove the implication.

Sufficient condition ⇐= :
By contradiction, if f isn’t continuous in x0 then:

∃ ε̄ > 0 : ∀δ > 0 ∃xδ ∈ X : 0 < dX(xj , x0) < δ and dY (f(xδ), f(x0)) ≥ ε̄.
(⋆)

Let δn = 1
n , with n ∈ N and let xn = xδn . Then {xn} ⊆ X and dX(xn, x0) <

1
n meaning that xn → x0.
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By (⋆) we have dY (f(xn), f(x0)) ≥ ε̄, that is f(xn) doesn’t converges to
f(x0) so f is not sequentially continuous. This prove the co-implication. ■

The general definition for continuity 1.2.39 on page 51 can be written as
follows in terms of metric spaces:

Theorem 1.2.46 (Characterization of continuity in metric spaces)
Let (X, dX), (Y, dY ) be metric spaces and consider a function f :
X → Y .
Then the function f is continuous in X if ∀A ⊂ Y open set we have
that f−1(A) ⊂ X is an open set.

The continuity is invariant with respect to equivalent distances:

Proposition 1.2.47
Let (X, d1), (X, d2) be metric spaces, where d1 is equivalent to d2.
A function f : (X, d1) → (X, d1) is continuous if and only if f :
(X, d2) → (X, d2) is also continuous.

Proposition 1.2.48
Let (X, dX), (X, d̃X) be metric spaces, such that ∃C1 > 0 : dx ≤
C1d̃x.
Let also (Y, dY ), (Y, d̃Y ) be metric spaces, such that ∃C2 > 0 : d̃y ≤
C2dy.
If f : (X, dX) → (Y, dY ) is continuous, then f : (X, d̃X) → (Y, d̃Y )
is also continuous.

Proof. Let x0 in X. By hypothesis, we have:

∀ε > 0 ∃ δ = δ(x0, ε) : dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ε

Take ε̃ > 0 and define δ̃(ε̃) := 1
C1

· δ
(

ε̃
C2

)
. Then we have:

d̃X(x, x0) < δ̃(ε̃) =⇒ dX(x, x0) < δ
(

ε̃
C2

)
=⇒ dY (f(x), f(x0)) <

ε̃
C2

=⇒ d̃Y (f(x), f(x0)) < ε̃

Because ε̃ is arbitrary, f : (X, d̃X) → (Y, d̃Y ) is continuous by definition. ■
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Limits and continuity for functions in topological spaces The notion of
continuity function is slightly different.

Definition 1.2.49
Let (X, τX), (Y, τY ) be topological spaces, and consider a function
f : X → Y .
Then the limit of f(x) is y0, namely f(x) → y0, as x → x0, with x0
accumulation point for X, if:

∀B ∈ τY : y0 ∈ B ∃A ∈ τX : x ∈ A, f(A \ {x0}) ⊂ B.

When such limit does exist, then we say that the function converges
to y0 in x0, using the following notation:

lim
x→x0

f(x) = y0.

As for sequences in topological spaces, and as opposed to the metric space
definition, the limit can be not unique.

The definitions of continuity and sequential continuity are the same ones
already given for metric spaces (see definitions 1.2.41 on page 52 and 1.2.44
on page 53), simply with a different notion of convergence. Anyway, there
is a difference in their implications:

Proposition 1.2.50
Let (X, τX), (Y, τY ) be topological spaces, and consider a function
f : X → Y .
If f is continuous in x0, then f is sequentially continuous in x0.

The converse is not true in general, as topological spaces cannot be described
by sequences. But, if (X, τX) is a first countable topological spaces (see
1.2.27 on page 47), then the double implication holds.

As we done in 1.2.46 on the facing page, we will now provide another version
of the definition of continuity based on open sets (see 1.2.39 on page 51),
version adequate to the context of topological spaces:

Theorem 1.2.51 (Characterization of the continuity in topological
spaces)
Let (X, τX), (Y, τY ) be topological spaces, and consider a function
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f : X → Y .
Then the function f is continuous in X if:

∀A ∈ τY we have f−1(A) ∈ τX .

1.2.6 Other topological notions

Now we will examine same particular properties of spaces. First we discuss
a remark on topological spaces, then we will present the sequentially closed
space and the concepts of density and separability. Further sections will
develop the theory with the notions of completeness and compactness.

The following notion allow us to compare two topologies of the same set:

Definition 1.2.52
Let τ1 and τ2 be topologies on X.
We say that τ2 is weaker than τ1, and τ1 is stronger than τ2, if:

τ2 ⊆ τ1.

So τ = ∅ is the weakest topology, while τ = P(X) is the strongest.

Consider the setting of the definition and a continuous function f : (X, τ2) →
(Y, τy): then f : (X, τ1) → (Y, τy) is continuous as well. This is easy to show
as every preimage of an open set of τy is an open set belonging to τ1.

These definitions are instead about metric spaces only:

Definition 1.2.53
Consider a metric space (X, d), with E ⊂ X.
The diameter of E is

diam(E) := sup
x,y∈E

d(x, y).

We say that E is bounded if diam(E) < +∞.

We say that E is totally bounded if it can be “covered” with finitely
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many balls:

∀ε > 0 ∃ {xi}ni=1 : E ⊂
n⋃

i=1

B(xi, ε).

Sequentially closed set This is an alternative definition of closedness for
sets.

Definition 1.2.54
We say that A ⊂ X is sequentially closed if for every sequence
{xn} ⊂ A, xn → x∗ =⇒ x∗ ∈ A.

What is the relation between closed sets and sequentially closed sets? There
are any differences between metric space and topological space environment?
We summarize all those results in the following; recall theorem closure 1.2.18
on page 42 to get the big picture.

Proposition 1.2.55
Let (X, dX) be a metric space.
Then A ∈ X is closed if and only if it is also sequentially closed.

Let (X, τX) be a topological space.
If A ∈ X is closed, then it is also sequentially closed. In general,
the converse is not true.

Density and separability Topological spaces can have some particular
properties that are very useful. Later in the theory we will discover which
benefits separability implies.

Definition 1.2.56
Let (X, τ) be a topological space and A,B ⊂ X, with A ⊂ B.
We say that A is dense in B if Ā = B.
We say that A is everywhere dense if A is dense in X itself.
We say that A is nowhere dense11if ˚̄A = ∅12.

Recalling the definition of closure Ā, Ā = B means that if x ∈ B then every
open neighborhood of x intersects A.

11Italian translation: mai denso.
12This means that a nowhere dense set is a set such that the interior of its closure is

empty. In other words, a set is nowhere dense if its closure does not contain any balls.
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The same for Ā = X: this means that ∀D ∈ τD,∩A ̸= ∅.

Example 1.2.57 . Q is everywhere dense in R, id est Q̄ = R. This because
{(a, b), a < b} is a base for the standard topology of R, thus ∀A open sets ⊂
R : A ⊃ (a, b), one has (a, b) ∩Q ̸= ∅ that means Q̄ = R.

Remember that Q̊ = ∅ and ∂Q = R.

Definition 1.2.58
A topological space (X, τ) is separable if exists A ⊂ X countable
such that Ā = X.

Example 1.2.59 . The topological space (RN , τe) is separable ∀n ∈ N.

1.2.7 Complete spaces

Another property for metric spaces is completeness. To define such property
we have to consider the sequences that do not oscillate nor diverge: those
sequences are the following:

Definition 1.2.60
Let (X, d) be a metric space.
A sequence{xn} ⊂ X is a fundamental sequence (or Cauchy se-
quence) if:

∀ε > 0 ∃ n̄ = n̄(ε) : m,n > n̄ =⇒ d(xm, xn) < ε ∀n

or, equivalently, considering m = n+ p:

∀ε > 0 ∃ n̄ = n̄(ε) : m,n > n̄ ∧ p ∈ N =⇒ d(xn, xn+p) < ε ∀p.

From this we can make some considerations. As a converging sequence
tends to get closer and closer to a point, we wonder what is the relation
between converging and fundamental sequences

Proposition 1.2.61
Let (X, d) be a metric space.
If the sequence {xn} ⊂ X converges, then it is a fundamental se-
quence.
The converse is not true.

Moreover we have:
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Proposition 1.2.62
Any fundamental sequence is bounded.

Proposition 1.2.63
A fundamental sequence is convergent if and only if exists a conver-
gent subsequence.

The reader should prove that proposition: it’s really simple!

We have to understand why some fundamental sequences does not con-
verges. Sequences can be seen as a subset of elements, and for convergence
we need a notion of distance: we have to investigate into the metric space
in which sequence are defined.

Definition 1.2.64
A metric space (X, d) is complete if every fundamental sequence in
X converges to a limit in X.

So, if a space is not complete, the problem can lie in the set or in the
distance. Consider the following examples.

Example 1.2.65 . The metric space (R, de) is complete, while (Q, de) is not;
consider the sequence (1+ 1

n)
n. This sequence is fundamental and for n → ∞

it converges to e /∈ Q.

The metric space ((0, 1), de) is not complete because 1
n

n→∞−−−→ 0 /∈ (0, 1).

Example 1.2.66 . The metric space (R, d) with d(x, y) = |ex − ey| is not
complete. Here the problem lies in the distance.

Consider the sequence {xn} with xn = −n. The sequence is fundamental
indeed:

d(xn, xn+p)
n→+∞−−−−−→ 0 ∀p.

However, it is not convergent: if xn
d−→ x0 we expect that d(xn, x0) → 0 but

we have
d(xn, x0) = |e−n − ex0 | → ex0 ̸= 0 ∀x0 ∈ R.

insert ref
to the ex-
ercises,
in which
we discuss
complete-
ness of
functional
set

Any metric space (X, d) admits a “completion” (X̃, d). This is a complete
metric space such that X is dense in X̃.
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The following theorem characterize the subspaces of complete metric spaces.

Proposition 1.2.67
Let (X, d) be a complete metric space and E ⊂ X.
The metric space (E, d) is complete if and only if E is closed.

Proof. Recall that in metric space closure is equivalent to sequentially clo-
sure (see proposition 1.2.55 on page 57).

Necessary condition =⇒ :
Let {xn}n ⊂ E such that xn → x⋆. We have to prove x⋆ ∈ E.
Since sequence converges, then is fundamental in E, which is, by hypothesis,
complete with respect to d.
Than we have xn → x⋆ ∈ E so that E is closed.

Sufficient condition ⇐= :
Let {xn}n ⊂ E be fundamental in (E, d), in particular {xn}n is fundamental
in (X, d).
As (X, d) is complete, it exists x⋆ such that xn → x⋆ ∈ X.
But E is closed, so x⋆ ∈ E and the thesis is proved. ■

For the sake of a complete discussion, we present the first Cantor’s inter-
section theorem, which is a characterizations, a necessary and sufficient
condition to completeness.

Theorem 1.2.68 (Cantor’s intersection theorem I)
Let (X, d) be a metric space.
It is complete if and only if:

∀{En}n∈N ⊂ P(X) : En+1 ⊂ En ∧ diam(En)
n→∞−−−→ ∅

∃x⋆ ∈ X :
⋂
n≥1

En = {x⋆}.

1.2.8 Compact spaces

The last property that we will discuss is compactness. It will be discussed for
both topological and metric spaces. We now provide some basic definition
specific for topological space, even if those make sense for metric spaces
also.
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Definition 1.2.69
Let (X, τ) be a topological space and E ⊂ X.
A family {Ei}i∈I is a cover of E if

E ⊂
⋃
i∈I

Ei.

An open cover is a cover made of open sets.
A subcover is a subfamily of a cover which is a cover of E itself.
That is, {Ei}i∈J , J ⊂ I, is a subcover if E ⊂

⋃
i∈J Ei.

Definition 1.2.70
Let (X, τ) be a topological space. The set X is compact if from
each of its open cover, we can select a finite subcover. Namely:

∀{Ai}i∈I , Ai ∈ τ ∀i ∈ I : X ⊂
⋃
i∈I

Ai; ∃ J ⊂ I, J finite : X ⊂
⋃
i∈J

Ai.

In case of single set withing a topological spaces, we have the following

Definition 1.2.71
Let (X, τ) be a topological space and E ⊂ X.
We say that E is compact if it is compact as topological space with
the induced topology13, that is every cover of E made of open sets
of X admits a finite subcover.

Notice that if τ1 and τ2 are topologies on X, with τ2 weaker than τ1, and
E ⊂ X is compact with respect to τ1, then E is also compact with respect
to τ2; the reverse is false.

Example 1.2.72 . The set E = (0, 1) is not compact with respect to de.
Indeed, consider En = ( 1n , 1), which is open: {En} is a cover for E as
(0, 1) ⊂

⋃
n∈NEn, but there is no finite subcover.

Example 1.2.73 . Consider (X, τd), where τd is the discrete topology for
which all subset of X are open (τd = P(X)): only finite subsets of X
are compact.

13An induced topology for a set belonging to a topological space is the smallest topology
for which any subset open with respect the topology of the space is open.
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Example 1.2.74 . Consider (X, τ0) with τ0 = {∅, X}: any subset of X is
compact.

Proposition 1.2.75
Let (X, τ) be a compact topological space and S ⊆ X.
If S is closed then S is compact.

Proof. Let {Ei}i∈I be a cover of S made of open sets in X.
As if S is closed then X \ S is open, {Ei}i∈I ∪ (X \ S) is an open cover of
X.
Since (X, τ) is compact, this open cover admits a finite subcover, that is:

∃ J ⊂ I : X ⊂ (∪j∈JEj) ∪ (X \ S).

So S ⊂ ∪j∈JEj , that is {Ej}j∈J is a finite subcover of S, hence the thesis.
■

Notice that the compactness of S does not imply the closedness of S; for ex-
ample in (X, τ0) only X and ∅ are closed, yet any A ⊂ X is compact.

Now the reader could prove this proposition.

Proposition 1.2.76
Continuous functions map compact sets into compact sets.

Sequentially compactness We can provide a slightly different definition
or compactness, again we provide the definition for topological spaces but
it take sense for metric spaces as well.

Definition 1.2.77
We say that (X, τ) is sequentially compact if for every sequence in
X it exists a convergent subsequence, namely:

∀{xn} ⊂ X ∃ {xnk
} ⊂ X : xnk

k→∞−−−→ x⋆ ∈ X.

Compactness and sequential compactness are different notions, and they do
not imply each other, but there are some relations. Indeed, for topological
spaces the following theorems hold (recall definition of first and second
countable spaces 1.2.27 on page 47):
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Theorem 1.2.78
Let (X, τ) be a topological space, let E ⊂ X compact.
If X is first countable, then E is sequentially compact.

Theorem 1.2.79
Let (X, τ) be a topological space, let E ⊂ X be sequentially com-
pact.
If X is second countable, then E is compact.

Compactness for metric spaces In metric spaces the notion of compact-
ness is the same as for topological spaces; indeed, it is defined upon the
notion of openness, which has already been defined for both kind of spaces.
Here we see the relation between compactness and boundedness for metric
spaces (recall definition of totally bounded set 1.2.53 on page 56).

Theorem 1.2.80 (Characterization of compact spaces)
If (X, d) is a metric space, the following are equivalent:

• the set X is compact;

• the set X is sequentially compact;

• the set X is complete and totally bounded.

Corollary 1.2.81
Let (X, d) be a metric space, with E ⊂ X.
If E is compact then it is closed and bounded.

Proof. First, as E is compact, then it is totally bounded, so it is also
bounded: see the previous theorem.

Let us prove that E is closed: it’s enough to show that E is sequentially
closed.
By the previous theorem, if E is compact then it is also complete.
Take a converging sequence {xn}n∈N ⊂ E such that xn

d−→ x⋆. Is x⋆ ∈ E?
Since {xn}n∈N is fundamental (it’s converging) and E is complete, {xn}n∈N
has a limit in E so x⋆ ∈ E and the thesis is reached. ■

The converse in general is not true.
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Heine–Borel theorem In case of X = RN we have the following important
theorem:

Theorem 1.2.82 (Heine–Borel)
Let (RN , de) and K ⊂ RN .
Then K is compact if and only if K is closed and bounded

As in later chapters compact set will play a important role, we denote a
compact set with the letter K.

Proof. Necessary condition =⇒ :
This follows from the previous corollary.

Sufficient condition ⇐= :
As K ⊂ RN is closed and RN complete, K is complete as well.
Consider an hypercube C such that C ⊃ K with l being the length of its
side, divide C into mn small cubes, with m ∈ N which have size l

m .
Let’s call them

C
(m)
1 , . . . , C(m)

m .

Their diagonal has length dm = l
m

√
n

m→∞−−−−→ 0.
Now fix ε > 0 and take m large such that dm < ε. Then:

K ⊂ C =
mn⋃
j=1

C
(m)
j ⊂

mn⋃
j=1

Bε(xj).

So the set is totally bounded and complete, therefore it is also compact,
hence the thesis. ■

This does not work in infinite dimensional spaces because mn n→∞−−−→ +∞
and total boundedness requires a finite amount of balls.

Function defined on compact spaces

Proposition 1.2.83
Let (X, τx) and (Y, τy) two topological spaces and E ⊂ X be com-
pact. Let f : X → Y be a continuous function.
Then the image f(E) compact.

Proof. Let {Bi}i∈I be an open cover of f(E), and Ai := f−1(Bi).
Then Ai is open (from the continuity of f) and E ⊂

⋃
i∈I Ai.
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As E is compact, it exists a finite subcover E ⊂
⋃n

k=1Aik . This implies
that:

f(E) ⊂ f

(
m⋃
c=1

Aik

)
=

n⋃
k=1

Bik

which is a finite subcover of f(E), so it’s compact. ■

Theorem 1.2.84 (Weierstrass)
Let (X, τ) topological space, X compact, and f : X → R continu-
ous.
Then F achieves a maximum and a minimum.

Proof. The image f(X) ∈ R is compact, so it’s closed and bounded.
This implies that sup f(x) ⊂ f(X) and inf f(x) ⊂ f(X).
So there exists a maximum and a minimum. ■

Semicontinuity Now we define a weaker notion of continuity (see defini-
tion of limsum and liminf A on page 303).

Definition 1.2.85
Let (X, τ) a topological space, and let f : X → R⋆.
We say that f is lower semicontinuous in x0 ∈ X if:

∀ε > 0 ∃U ∈ τ : x0 ∈ U and f(x) > f(x0)− ε ∀x ∈ U.

Equivalently in a metric space (X, d), f is lower semicontinuous if:

lim inf
x→x0

f(x) ≥ f(x0).

We say that f is upper semicontinuous in x0 ∈ X if:

∀ε > 0 ∃U ∈ τ : x0 ∈ U and f(x) < f(x0)− ε ∀x ∈ U.

Equivalently in a metric space (X, d), f is upper semicontinuous if:

lim sup
x→x0

f(x) ≤ f(x0).
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Observe that f is continuous if and only if it is both lower semicontin-
uous and upper semicontinuous; as it happens with the existence of the
limit.

x0

(a) u.s.c.

x0

(b) l.s.c.

x0

+∞

(c) l.s.c.

Figure 1.3: Examples of lower and upper semicontinuous functions.

Theorem 1.2.86
Let f : (X, τ) → R a lower semicontinuous function defined on a
topological space, with X compact.
Then f achieves its minimum.

Let f : (X, τ) → R an upper semicontinuous function defined on a
topological space, with X compact.
Then f achieves its maximum.

Now some results to complete the treatise.

Theorem 1.2.87 (Cantor’s intersection theorem II)
Let (X, d) be a topological space, {Kn}n∈N be a sequence of compact
sets with Kn+1 ⊂ Kn and Kn ̸= ∅ ∀n ∈ N.
Then ⋂

n∈N
Kn ̸= ∅.

Theorem 1.2.88 (Heine–Cantor)
Let (X, d) be a metric space, X a compact set and f : X → R a
continuous.
Then f is uniformly continuous.

66



1.2.9 The Cantor set and the Vitali function

Proves could require the use of counterexample to reach faster the result.
Here we present two great result which can be useful to better understand
the next results. First we will present the Cantor set which has quite unique
characteristics in terms of its measure, then we will present a function, the
Vitali–Cantor, which has interesting properties in terms of continuity and
differentiation.
To fully understand this section the reader may read the measure chapter
before, and study these results only when there is a need.

The Cantor set This set has a very weird definition which leads to really
useful properties, especially when they are combined in the same set.

Definition 1.2.89
The Cantor set T is defined as follows.
Take the interval [0, 1] and remove the open middle portion of size
1
3 . We call C1 the remaining set:

C1 :=

[
0,

1

3

]
∪
[
2

3
, 1

]
.

Now, from each interval of C1, we remove an open middle portion
of size 1

9 . Thus we obtain

C2 :=

[
0,

1

9

]
∪
[
2

9
,
1

3

]
∪
[
2

3
,
7

9

]
∪
[
8

9
, 1

]
.

Then we iterate this process: for every k we define:

Ck :=

2k⋃
n=1

I(k)n ,

where I
(k)
n is a closed interval obtained from Ck−1 by erasing the

open middle portion of size
(
1
3

)k from each Ik−1
m .

We define the Cantor set as:

T :=

∞⋂
k=1

Ck.
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[0, 1]

C1

C2

C3

...

Construction of the Cantor set

The Cantor set T has the following properties:

Proposition 1.2.90
The Cantor set is non-empty, namely: T ̸= ∅, and, in particular,
0, 1 ∈ T .

Indeed, we do not remove the extrema of each interval Ik−1
m : those extrema

0, 19 ,
2
9 ,

1
3 ,

2
3 , . . . are contained in T .

Proposition 1.2.91
The Cantor set is closed.

Proof. To prove that T is closed, notice that the intervals Ck are closed for
any k as it is a finite union of closed intervals.
Then, as T is a countable intersection of closed set it is closed itself. ■

Proposition 1.2.92
The Cantor set is compact.

Proof. As T is a subset of R, to achieve this result we have to show that T
is closed and bounded.
It is bounded as its diameter is 1, and it is closed as we proved the previous
proposition. ■

Proposition 1.2.93
The Cantor set is a Lebesgue-measurable set.
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To understand what this means, see definition 2.1.40 on page 101.

Proof. As T is closed, it is Borel measurable as well, so it is Lebesgue
measurable (see proposition 2.1.43 on page 102). ■

Proposition 1.2.94
The length of the Cantor set is zero, namely |T | = 0.

Proof. We have T ∈ Ck for all k, and thus:

|T | ≤ |Ck| ≤ |
2k⋃
n=1

Ikn| =
2k∑
n=1

|Ikn| =
2k∑
n=1

(
1
3

)k
=
(
2
3

)k k→∞−−−→ 0.

So it has measure zero, and it does not contain any interval. ■

Later, with the generalized Cantor set, we will see that it is not necessary
to have measure zero, in order to contain no intervals.

Proposition 1.2.95
The Cantor set T is a perfect set, namely every point x ∈ T is a
limit point for T .

Equivalently we say that T does not have any isolated points.

Proof. We have to prove that for any x ∈ T and for all ε > 0 we have:

{T ∩ (x− ε, x+ ε)} \ {x} ≠ ∅

Taking x ∈ T , by its definition we have that x ∈ Ck for any k ∈ N.
Then for all k ∈ N there exists nk ∈ {1, . . . , 2k} such that x ∈ Iknk

= [ak, bk].
Recall that |Iknk

| = 1
3k

.
Fix ε > 0 and take k sufficiently large so that:

|Iknk
| = (bk − ak) =

1

3k
< ε.

Then (x− ε, x+ ε) ⊃ [ak, bk]. Since both ak, bk ∈ T we have:

ak, bk ∈ (x− ε, x+ ε) ∩ T ∀k :
1

3k
< ε.

This completes the proof. ■
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Proposition 1.2.96
The Cantor set does not contain any open interval, namely:

T̊ = ∅.

This prove is left to the reader, observe that each |Ikn| tends to 0 as k →
∞.

Proposition 1.2.97
The Cantor set is uncountable.

Proof. Rename each interval with L, R as follows:

L R

LL RRLR RL

As Ck = ∪2k
n=1I

k
n, at each subsequent step every interval Ikn is divided into

two sub-intervals, namely R and L.
Let x ∈ T = ∩∞

k=1Ck. At step one x can be either in L or in R. If we take
x ∈ L, at step two x can be x ∈ LL or x ∈ LR.
We continue tracing down the intervals where x lies in each Ck, thus getting
an unique, infinite sequence of L and R.
Then we define a map f : T → E = {{sk}k∈N : sk = L or R ∀k}.

We could prove that E is uncountable and f is bijective: we would have
|T | = |E| that prove our thesis.

The set E is uncountable:
By contradiction, suppose that E is countable; then we could assign a nat-
ural number to every element of E:

E = {x(n) = {s(n)k }k∈N : n ∈ N}.

We construct a new sequence x = {t(n)n }n∈N with

tn :=

{
L if s(n)n = R

R if s(n)n = L

Clearly x ∈ E, since it is made of R and L, but tn ̸= s
(n)
n and thus x ̸= x(n)

for all n. Then E is uncountable.
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The function f is injective:
Let x, y ∈ T such that f(x) = f(y).
By construction for any k we have that x and y belong to the same Ikn.
As

|Ikn| =
1

3k

and
|x− y| ≤ |Ikn| =

1

3k
∀k,

we gain that x = y and f is injective.

The function f is surjective:
Let {sk}k ∈ E. We have to prove that there exists x ∈ T such that f(x) =
{sk}k.
Fix {sk}k and let Iknk

be the interval identified by {sk}k at each step k.
In each k we can take

yk ∈ Iknk
∩ T, with, by construction, Ik+1

nk+1
⊂ Iknk

.

We can assert that {yk} is a fundamental sequence, indeed we have:

dE(yk, yk+1) < |Iknk
| = 1

3k
k→∞−−−→ 0.

Moreover, ([0, 1], dE) is complete, indeed it is a closed subset of a complete
metric space (R, dE), then {yk} is converging to an x ∈ [0, 1].
As T is compact, it is closed and sequentially closed, so x ∈ T .

We have still to prove that f(x) = {sk}k.
By contradiction suppose that there exists a sequence {tk}k and a certain
k̄ for which tk̄ ̸= sk̄, and suppose that f(x) = {tk}k.
Obviously {tk}k ̸= {sk}k, indeed we have that for all k > k̄ we have tk ̸= sk.
So x ∈ I k̄m1

(the interval represented by {tk}k), but yk̄, yk̄+1, . . . belongs to
I k̄m2

(represented by {sk}k).
Then we have:

dE(x, yk̄+p) >
1

3k̄
∀p but yk → x as d(x, yk+p)

p→∞−−−→ 0.

So we have a contradiction, then f is bijective and this ends the proof. ■
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Proposition 1.2.98
The Cantor set has the same cardinality of R and [0, 1].

The generalized Cantor set Similarly as before, it is construct by remov-
ing at each step not a third of the previous interval but a smaller, arbitrary
quantity. What we will obtain is a non-zero-measure set which still have
useful characteristics.

Definition 1.2.99
The generalized Cantor set T is defined as follows.
Fix ε ∈ (0, 1) and take Cε

0 = Iε,00 = [0, 1].
We build Cε

1 by erasing the open middle portion of size ε
3 from Iε,00 ,

and Cε
2 by erasing the open middle portion of size ε2

9 from Iε,10 and
Iε,11 , the intervals composing Cε

1 .

Now iterate the process: Cε
k is constructed removing open middle

portions of size
(
ε
3

)k from each interval Iε,k−1
n of Cε

k−1.

The generalized Cantor set is defined as:

Tε =
∞⋂
k=1

Cε
k.

The generalized Cantor set has many properties analogues to the Cantor
set, in particular holds the following propositions: it is non-empty (1.2.90
on page 68), closed (1.2.91 on page 68), compact (1.2.92 on page 68), perfect
(1.2.95 on page 69), does not contains any interval (1.2.96 on page 70) and
is uncountable (1.2.97 on page 70) with the same cardinality of R (1.2.98).
Anyway its measure is not zero, indeed it is easy to compute |Tε|:

|Tε| = 1−ε

3
−2

ε2

9
−. . . = 1−

+∞∑
k=1

2k−1
(ε
3

)k
= 1−1

2

+∞∑
k=1

(
2ε

3

)k

=
3(1− ε)

3− 2ε
> 0.

You can still prove that Tε does not contain any interval: start by computing∣∣∣I(k)n,ε

∣∣∣→ 0.

The characteristic function of Tε, 1Tε is Lebesgue-integrable:∫ 1

0
1Tε dµ = |Tε| .
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Observe that it is not Riemann-integrable; you reader should prove it: the
interior of Tε is ∅, its measure is zero, the lower Riemann sum converges to
0, but |Tε| > 0, and thus the upper Riemann sum converges to |Tε|.

The Vitali–Cantor function This function, also known as the devil’s stair-
case, present many properties in terms of continuity and derivability which
make it a good counterexample in many situation. Its definition does not
coincide with its construction.

Definition 1.2.100
The Vitali–Cantor function, is a function f : [0, 1] → [0, 1] such
that:

• f(0) = 0 and f(1) = 1;

• f is continuous and monotone non-decreasing;

• f is derivable almost everywhere in [0, 1], with f ′ = 0 almost
everywhere in [0, 1].

Such function can be obtained through a limit of the following series of
function:

f0(x) = x

f1(x) =


3
2x if x ∈ [0, 13 ]
1
2 if x ∈ (13 ,

2
3)

3
2(x− 1

3) if x ∈ [23 , 1]

=

{
1
2 if x ∈ [0, 1] \ C1

linear if x ∈ C1

=

∫ x

0
g1(t)dt with g1(t) =

3

2
1C1(t)

f2(x) =


1
2 if x ∈ [13 ,

2
3 ]

1
4 if x ∈ [19 ,

2
9 ]

3
4 if x ∈ [79 ,

8
9 ]

linear if x ∈ C2
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=

∫ x

0
g2(t)dt with g2(t) =

(
3

2

)2

1C2(t)

...

fk(x) =

∫ x

0
gk(t)dt with gk(t) =

(
3

2

)k

1Ck
(t)

The limit of the sequence {fk} is the Vitali–Cantor function, we will prove
this through the following propositions. Let’s see its graph:

Figure 1.4: Construction of the Vitali–Cantor function.

as we can see, it can be considered as a fractal.

Proposition 1.2.101
For any k we have that fk(0) = 0 and fk(1) = 1.

Proof. Considering the properties of the defined integral, as the integral
domain is reduced to a point, we have fk(0) = 0. The other result can be
computed:

fk(1) =

∫ 1

0

(
3

2

)k

1Ck
(t) dt =

(
3

2

)k

|Ck| = 1.

■

Proposition 1.2.102
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For any k we have that fk is monotonic increasing and Lipschitz-
continuous.

Proof. Observe that for any x < y we have:

|fk(y)− fk(x)| =
∣∣∣∣∫ y

x
gk(t) dt

∣∣∣∣ = ∫ y

x
gk(t) dt ≤

(
3

2

)k

|y − x| .

This fits the Lipschitz-continuity (see definition 2.4.7 on page 147) and
shows that it is also bounded. ■

Proposition 1.2.103
The sequence is piece-wise constant.
In particular if x ∈ CC

k , then fk(x) = fk+m(x) for all m ∈ N, and
precisely there exists Nx ∈ N such that:

fk(x) = fk+m(x) =
Nx

2k
∀m ∈ N.

Proof. First, we prove the equality. If x /∈ Ck =
⋃2k

n=1 I
k
n, then there exist

Nx intervals Ikn such that Ikn ⊂ [0, x], and (2k −Nx) intervals Ink such that
Ikn ⊂ [x, 1], thus

fk(x) =

∫ x

0

(
3

2

)k

1Ck
(t) dt =

(
3

2

)k

Nx|Ikn| =
(
3

2

)k

Nx

(
1

3

)k

=
Nx

2k

Now we prove the value. If x /∈ Ck, then x /∈ Ck+1: since each interval Ikn
produces two intervals Ik+1

n , when we have Nx intervals Ikn ⊂ [0, x], then we
also have 2Nx intervals Ik+1

n ⊂ [0, x]. Therefore:

fk+1(x) =

(
3

2

)k+1

· 2Nx · |Ik+1
n | = Nx

2k
.

Thus fk(x) = fk+1(x), and by induction fk(x) = fk+m(x) ∀m ∈ N. ■

Proposition 1.2.104
Each complementary of a set Ck can be rewritten as an union of
open sets, namely:

CC
k =

⋃
J (k)
n ,
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where J
(k)
n are open.

Moreover, if x ̸= y and x, y are contained in the same J
(k)
n , then

fk(x) = fk(y).

Proof. Considering the previous proposition, this follows as x, y /∈ Ck, and
Nx = Ny. ■

Proposition 1.2.105
The sequence {fk} is fundamental with respect to d∞. Moreover,
the limit f exists, f(0) = 0, f(1) = 1 and f is monotonic increasing.

Proof. Take x ∈ CC
k . Then fk+1(x) = fk(x).

By continuity of fk and fk+1 we have:

fk+1(x) = fk(x) ∀x ∈ �CC
k .

Take now x ∈
(
�CC
k

)C
= C̊k instead. Then x ∈ I̊kn = (ak, bk): we have

fx+1(ak) = fk(ak) and fk+1(bk) = fk(bk).

Using the triangular inequality and the monotonicity of f :

|fk+1(x)− fk(x)| = |fk+1(x)− fk+1(ak) + fk+1(ak)− fk(x)|
≤ |fk+1(x)− fk+1(ak)|+ |fk(x)− fk(ak)|
≤ (fk+1(bk)− fk+1(ak)) + (fk(bk)− fk(ak))

= 2 · (fk(bk)− fk(ak))

= 2

∫ bk

ak

gk(t) dt

= 2

∫ bk

ak

(
3

2

)k

dt

= 2 ·
(
3

2

)k

· 1

3k

=
1

2k−1

And thus:
d∞(fk+1, fk) ≤

1

2k − 1

k→+∞−−−−→ 0.
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Hence {fk} is a fundamental sequence in (C0([0, 1]), d∞), which is complete,
and thus there exists

f ∈ C0([0, 1]) : fk
d∞−−→ f.

Thus f(0) = 0, f(1) = 1 and f is monotonic increasing. ■

Proposition 1.2.106
The function f is differentiable almost everywhere; where that is
possible we have f ′(x) = 0.

Proof. Let x /∈ T . Then there exists k ∈ N such that x /∈ Ck.
But CC

k is open, and hence there exists ε > 0 such that (x− ε, x+ ε) ∈ CC
k .

Therefore, by what we proved in the previous points (1.2.103 on page 75
and 1.2.104 on page 75), we have that

fk+m(y) =
Nx

2k
∀y ∈ (x− ε, x+ ε) ∀m ∈ N.

As m → +∞, we obtain

f(y) =
Nx

2k
∀y ∈ (x− ε, x+ ε).

This means that f is constant in a neighborhood of x, and thus it is dif-
ferentiable in x ∈ TC, with f ′(x) = 0. Observe that the function f is not
differentiable only in T : but as |T | = 0 we have that f is differentiable
almost everywhere. ■
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2 Real Analysis

Now that we have introduced some fundamental notions about set theory
and topolgy, we can begin our study of Real Analysis, which is a branch
of mathematical analysis that studies real numbers and the most common
operations we can do with them: sequences, series, functions, integration.
This raises some meaningful questions: how are they defined from a rigorous
point of view? Which are their properties? Are there some operations that
cannot be done for certain reasons? Which characterizations can we find to
connect these structures?
In this part we will first introduce measure theory, which as abstract as
it may seem, it is essential to define the powerful Lebesgue integral later
on. Measure theory also does some dotting the i’s and crossing the t’s on
something that the reader may have seen many times in previous courses:
probability. Some concepts that maybe did not add up before, now will
make sense. We will also explore in a meaningful way the concept of non-
measurable sets, which is way more non-trivial than measurable sets.
Then, starting from a formal definition of integration according to Lebesgue,
we will see some relevant theorems and properties, useful both in pratical
and theoretic fields.
We will see the two fundamental theorems of calculus, something that the
reader may have also seen in a simplified form in previous courses. To this
end, we will explore new definitions of continuity.
At last, we will give some definitions and useful theorems to deal with
measures defined in product spaces.
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2.1 Measure theory

Here we try to find a way to measure sets. Considering for instance a non-
empty set Ω, how can we define a set function µ : P(Ω) → [0,+∞] which
is interpretable as a measure of the set Ω? Are there some properties
required?

Two reasonable properties for such function are:

µ(∅) = 0, µ(A ∪B) = µ(A) + µ(B) if A ∩B = ∅.

Does a function with those properties exist?

2.1.1 Measurable spaces

Our first step is to define a good environment in which we can have all the
tools we need: let’s define on which kind of sets we can search for such
measure.

Definition 2.1.1
Consider a non-empty set Ω. The family of subsets M ⊆ P(Ω) is a
σ-algebra of Ω if:

• the empty set is included:

∅ ∈ M;

• it is closed with respect to complements:

E ∈ M =⇒ EC ∈ M;

• it is closed with respect to countable unions:

{Ei}i∈N ⊆ M =⇒
⋃
i∈N

Ei ∈ M.

It can be easily shown from the definition, that also Ω itself belongs to the
σ-algebra and, by using the De Morgan’s laws, that M is closed with respect
to countable intersections:

∀{Ej}j∈N ∈ M
⋂
j∈N

Ej =
⋂
j∈N

(EC
j )

C =

⋃
j∈N

EC
j

C

∈ M.
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Similarly it can be proved that the difference of sets belonging to the σ-
algebra itself belongs to the σ-algebra.

The power set P(Ω) is known to be the trivial σ-algebra.

This allow us to find the ideal environment for a measure:

Definition 2.1.2
Let Ω ̸= ∅ and M ⊆ P(Ω) be a σ-algebra.
Then (Ω,M) is a measurable space.

It is easy to show that the intersection of σ-algebras is still a σ-algebra.

To many purposes is useful to consider the “smallest” σ-algebra containing a
given family of subsets of Ω. The following definition formalize this concept.

Definition 2.1.3
Let E ∈ P(Ω).
The σ-algebra generated by E , written as ⟨E⟩, is defined as the
intersection of all the σ-algebras containing E .

It’s easy to prove that this definition is well-posed, to do that, show that
the intersection of those σ-algebras itself is a σ-algebra. Furthermore, it’s
easy to show that such σ-algebra is actually the smallest.

Exercise 2.1.4 . Let Ω ̸= ∅.
Consider E = {Ei}i=1,...,N as a partition of Ω: prove that ⟨E⟩ has 2N ele-
ments.

Recalling the concepts of open sets and topological spaces (see definition
1.2.21 on page 44), here is presented a special σ-algebra which has been
defined with a special name due to its relevance.

Definition 2.1.5
Let (X, τ) be a topological space with X ̸= ∅.
We call Borel σ-algebra, denoted by B(X), the σ-algebra generated
by open sets.
All the set that it contains are called Borel sets.

Here some general category of sets which belongs to the Borel σ-algebra.
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Definition 2.1.6
We call Fσ sets every countable union of closed sets.
We call Gδ sets every countable intersection of open sets. 14

Open and closed sets, Fσ sets and countable intersections of Fσ sets, Gδ sets
and countable unions of Gδ sets all belongs to the Borel σ-algebra.

2.1.2 Measurable functions

We have provide a definition for measurable spaces, but, yes, we still don’t
know how to measure them. Before that we’ll discuss the concept of measur-
ability for functions. The first steps will not involves any kind of function,
but we will focus on an easily manageable case. It will be easy to extend
those results to the general case.

Definition 2.1.7
Let (X,M) be a measurable space, and (Y, τ) be a topological space.
We say that f : X → Y is a measurable function if the preimage
of any open set is measurable, namely:

f−1(A) ∈ M for all A ∈ τ.

Observe that a function defined on two topological spaces, namely f :
(X, τX) → (Y, τY ), if it maps open sets into open sets then it is B-measurable
with respect to the measurable space (X,B(X)). Indeed, for every open set
A ∈ τ , f−1(A) is open in X by definition, and thus f−1(A) ∈ B(X).

Theorem 2.1.8 (Composition of a measurable function with a con-
tinuous one)
Let f : (Ω,M) → (X, τX) be a measurable function and g :
(X, τX) → (Y, τY ) be a continuous function.
Then g ◦ f : (Ω,M) → (Y, τY ) is measurable.

As we said in the previous remark, g is not only continuous but also B(X)-
measurable. Here we prove this case, which is more general with respect to
the theorem.

14Felix Hausdorff (1868 - 1942) adopted this convection; F is for the French word
“fermé” which means closed, while σ is for “somme” which means sum (union) in the
same language; on the other hand, G is for the German word “Gebiet” meaning area or
neighbourhood, indicating open set, and δ is for “Durchschnitt” which means intersection.
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Proof. Let A ⊂ Y be an open set, then g−1 (A) ∈ B (X). Now let B ⊂ X
be open, and f−1(B) ∈ M.

As B(X) is generated by all the open sets in X and is closed with respect
to union and complement, f−1(g−1(A)) ∈ M and this means that g ◦ f is
M-measurable (in case A = ∅ we have g ◦ f(A) = ∅ ∈ M) . ■

If f and g are just measurable, then g ◦ f is not necessarily measurable,
even if f is continuous.

Measurable functions in R There are some important results that holds
when working in R. First, the previous theorem can be extended to the
multi dimensional case.

Theorem 2.1.9
Let (u, v) : (Ω,M) → R2 be M-measurable.
Moreover, let Φ : R2 → (X, τ) be continuous.

Then h = Φ(u, v) : (Ω,M) → (X, τ) is M-measurable.

Proof. Let A ⊆ X be open. Then Φ−1(A) ⊆ R2 is open.
Thanks to theorem 2.1.10, we have that Φ−1(A) =

⋃
i∈N Ii × Ji where

Ii, Ji ⊂ R are intervals.
Finally, observe that h−1 (Ii × Ji) = u−1 (Ii) ∩ v−1 (Ji) ∈ M. ■

This theorem has several implications: if u, v : (Ω,M) → R2 are measurable,
than u ± v, uv, |u|, u+, u− and other elementary operation with these
functions returns M-measurable functions.

The following proposition shows a topological property of the set R, it will
turn useful in many fields.

Theorem 2.1.10
Every open set Ω ∈ R can be written in a unique way as countable
union of mutually disjoint intervals, namely:

Ω =

∞⋃
j=1

Ij Ij = (aj , bj) .
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Every open set Ω ∈ RN , with n > 1, can be written in a unique
way as countable union of n intervals,namely:

Ω =

∞⋃
j=1

Ij Ij =
(
a1j , b

1
j

)
×
(
a2j , b

2
j

)
× · · · ×

(
anj , b

n
j

)
.

Proof. Step 1. The intervals are well defined :
First, consider x ∈ Ω: we need to build the largest open interval Ix ⊂ Ω
containing x.
We define Ix = (ax, bx) where:

ax := inf{a < x : (a, x) ⊂ Ω} and bx := sup{b > x : (x, b) ⊂ Ω};

notice that Ix ̸= ∅, ax ̸= x and bx ̸= x since Ω is open and x ∈ Ω.
Certainly we have that ax ∈ [−∞, x) and bx ∈ (x,+∞].
Moreover, we show that Ix ∈ Ω; let w ∈ Ix, without loss of generality we
assume that x < w < bx. Then by the definition of bx, it exists b > w such
that (x, b) ∈ Ω: then w ∈ Ω.

Step 2. The set is the union of the intervals:
Consider the collection of open intervals {Ix}x∈Ω. Since each x ∈ Ω and
x ∈ ix ⊆ Ω, then

Ω =
⋃
x∈Ω

Ix.

Here we have two problems: first, the family {Ix}x∈Ω may not be disjoint;
second the same family can be uncountable.

Step 3. The family of intervals is disjoint :
To solve the first problem we have to prove that if x, y ∈ Ω, then either
Ix = Iy or Ix ∩ Iy = ∅.
If Ix ∩ Iy ̸= ∅ then Ix ∪ Iy is still an open interval, and it contains both x
and y, and it is a subset of Ω.
Since Ix, as we proved before, is the largest open interval in Ω containing
x, we have:

Ix ⊇ Ix ∩ Iy ⊇ Ix =⇒ Ix = Ix ∪ Iy.

Similarly we can show that Ix = Iy.

Step 4. The family of intervals is countable:
Since for any x ∈ Ω there exists a rational number q ∈ Ix ⊆ Ω, and we have
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that Ix ∩ Iq ̸= ∅, hence Ix = Iq.
This means that:

Ω =
⋃
x∈Ω

Ix =
⋃

q∈Q∩Ω
Iq

as Q is countable, then Ω ∩Q is countable as well, hence the thesis. ■

This proof can be extended to RN case.

Proposition 2.1.11
Every open set Ω ⊂ RN can be written as a countable union of
closed, disjoint cubes, namely:

Ω =
∞⋃
j=1

Rj

where
Rj = [a1j , b

1
j ]× [a2j , b

2
j ]× · · · × [anj , b

n
j ]

with
aij < bij ∀i and R̊i ∩ R̊k = ∅ k ̸= i.

Observe that Rj must be almost disjoints.

This last results is about the Borel σ-algebras of R and R⋆; they don’t need
the entire topology to be generated.

Theorem 2.1.12
The Borel σ-algebra of R and R⋆ are defined as follows:

B(R) = ⟨{(a, b)}a,b∈R⟩ B(R⋆) = ⟨{(a,+∞]}a∈R⟩ .

Proof. Proof of the generator sets of B(R):
This first statement follows from theorem 2.1.10 on page 83.

Proof of the generator sets of B(R⋆):
For the second one, let us consider the set (a,+∞], which is open ∀a ∈ R.
So we have that:

B(R⋆) ⊇
〈
{(a,+∞]a∈R}

〉
=: M.
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Now we want to prove that B(R⋆) ⊆ M, by checking that the sets [−∞, a],
(a, b), (b,+∞] are contained in M for all a, b:

[−∞, a] = (a,+∞]C ∈ M

[−∞, a) =

∞⋃
n=1

(
−∞, a− 1

n

]
∈ M

(a, b) = [−∞, b) ∩ (a,+∞] ∈ M

The sets [−∞, a], (a, b), (b,+∞] form a base for the topology of R⋆, and
thus M ⊇ B(R⋆).
That proves that B(R⋆) ⊆ M. ■

Indeed, those structures are generated as follows:

B(R) = ⟨{(a, b)}a,b∈R⟩ B(R⋆) = ⟨{(a,+∞]}a∈R⟩

See proposition 2.1.12 on the preceding page for the proof of this result.

Measurability for sequence of functions Now we pose the following prob-
lem: having a sequence of measurable function which converges to a limit
function, is that function measurable? Before look at these results, recall
the notions of liminf and limsup explained in the appendix.

Theorem 2.1.13
Let fn : (Ω,M) → R⋆ be M-measurable functions for all n ∈ N.
Then sup fn, inf fn, lim sup fn, lim inf fn are all M-measurable.

Proof. Step 1. Inferior and superior :
Consider g(x) := sup fn(x):

g−1((a,+∞]) = {x ∈ R⋆ | sup fn(x) > a}
= {x ∈ R⋆ | ∃n : fn(x) > a}
= {x ∈ R⋆ | ∃n : x ∈ f−1

n ((a,+∞])}

=
⋃
n∈N

f−1
n ((a,+∞])

∈ M.
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We need to prove the measurability only on (a,+∞], the remaining comes
by properties of σ-algebra and topology; indeed, all the generators of the
topology τ⋆C have a counterimage in M.

Consider now g(x) := inf fn(x). Arguing as before we get: g−1 ([−∞, a)) =⋃
n∈N f

−1
n ([−∞, a)) ∈ M.

Step 2. Liminf and limsup:
Then consider g(x) := lim sup fn(x) = infn≥0

(
supk≥n fk(x)

)
. In the previ-

ous lines we have shown that supk≥0 fk is measurable, and so is the function
hn = supk≥n fk, for any n ∈ N; the infimum of such sequence, which is
inf hn

(
supk≥n fk

)
= g(x), is also measurable as we shown before.

We can argue in a similar way for lim inf fn(x) and conclude the proof. ■

Simple functions Let consider a simple kind of functions for which is
easy to find a measure. Those function will be the prototype of functions in
general and though them we will extend their measure to all the measurable
functions.

Definition 2.1.14
Let (Ω,M) be a measurable space (Ω ̸= ∅).
We say that s : Ω → R is a simple function if it has the following
form:

s(t) =

N∑
n=1

an1En(t)

where aj ∈ R and {Ej}Nj=1 is a partition of Ω made of measurable
sets.

The set function 1E the indicator function.

Example 2.1.15 . The function: s(t) = 1[−∞,2)(t) + 31[2,3](t)− 1(3,+∞)(t) is
a simple function.
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Figure 2.1: Plot of the function of example 2.1.15 on the preceding page.

Theorem 2.1.16
Let (Ω,M) be a measurable space, with Ω ̸= ∅.
For any function f : (Ω,M) → [0,+∞], M-measurable, there exists
a sequence of simple functions

{sn}n∈N : (Ω,M) → [0,+∞]

such that:

• the sequence is monotone:

sn(t) ≤ sn+1(t) ∀t ∈ Ω ∀n ∈ N;

• the sequence is dominated:

0 ≤ sn(t) ≤ f(t) ∀t ∈ Ω ∀n ∈ N;

• the sequence converges point-wise:

lim
n→+∞

sn(t) = f(t) ∀t ∈ Ω.

Moreover, if the function is bounded, namely there exists M > 0
such that f(t) < M for any t ∈ Ω, the sequence converges uniformly
to f in Ω.

Notice that [0,+∞] is a topological space with the topology inducted by
(R⋆, τ⋆C).
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The following is a constructive proof in which the sequence object of the
theorem is built.

Proof. Let n ∈ N0, split [0, n) in k = n2n intervals [aj , bj) of length 2−n.

Take E0 = f−1([n,+∞]) and Ej = f−1([aj , bj ]), which are M-measurable.

1
2n

n

E0E1E2

E3E4

[a1, b1]

[ak, bk]

[a2, b2]

[a3, b3]

...

Ek
· · ·

Figure 2.2: Construction of approximating simple functions.

Define now:

sn(t) := n1E0(t) +
n2n∑
j=1

aj1Ej (t).

By definition sn(t) is a simple function for any n ∈ N, with sn(t) = aj if
f(t) ∈ [aj , bj), and sn(t) = n if f(t) ∈ [n,+∞].

Bullet 1 :
It can be easily proved that sn(t) ≤ sn+1(t) for all t ∈ Ω and for all n ∈ N0,
since at every step the function either increases or stays put for every t.

Bullet 2 :
Notice the following:

f(t)− sn(t) = f(t)− n1E0(t)−
n2n∑
j=1

ai1Ei(t) ≥ 0 ∀t ∈ Ω,
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indeed, if t ∈ Ej = f−1([aj , bj)), we have f(t) − sn(t) = f(t) − j−1
2n =

f(t)− aj ≥ 0.
The case t ∈ E0 is trivial; we have f(t) ≥ sn(t) for all t ∈ Ω and all n ∈ N.

Bullet 3 :
If t ∈ Ω, whether f(t) ≥ n which implies sn(t) = n for all n ∈ N, or f(t) < n
which implies that exists n̄ = n̄(t) such that

0 ≤ f(t)− sn(t) ≤
j

2n
− j − 1

2n
=

1

2n
∀n ≥ n̄

and
lim
n→∞

sn(t) = f(t) ∀t ∈ Ω.

Final result :
Finally notice that if f is bounded, then n̄ does not depend on t anymore,
hence the converge is uniform on Ω. ■

2.1.3 Positive measures

Here we introduce a first yet abstract notion of measure: it will not satisfy
all of ours expectations but it is the first draft from which we will build an
actual measure.

Definition 2.1.17
Let Ω be a non-empty set and M one of its σ-algebras. We say that
a set function µ : M → [0,+∞] is a positive measure if:

1. the function µ is countably additive, namely for all sequence of
disjoint sets {Ej}j∈N ⊂ M we have:

µ

⋃
j∈N

Ej

 =
∑
j∈N

µ(Ej);

2. it exists at least a set E ∈ Ω which has a finite measure, namely:

µ(E) < ∞.

If µ is a positive measure (Ω,M, µ) is called measure space.
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Notice that in the countable additivity equality we may have infinity.

If the measure satisfy some specific property it may gain a special name,
for example:

• a measure µ is finite if µ(Ω) < ∞;

• a finite measure µ is a probability measure if µ(Ω) = 1;

• a measure µ is σ-finite if there exists {En}n∈N ⊂ M such that ∪n∈NEn =
Ω and µ(En) < +∞;

• a positive measure on B(Ω) is called Borel measure.

The following are examples of positive measures:

Example 2.1.18 . Take (Ω,P(Ω)).
The counting measure µC is defined as follows:

µC(E) :=

{
n if m(E) = n

+∞ if m(E) ≥ ℵ0

∀E ∈ M

where m(E) is the magnitude of E.

Example 2.1.19 . Take (Ω,P(Ω)).
The Dirac measure (or Dirac mass) δt is defined as follows:

δt(E) :=

{
1 if t ∈ E

0 if t /∈ E
∀E ∈ M.

Observe that δt is also a probability measure.

Example 2.1.20 . Take Ω = {xn}n∈N, M = P(Ω).
Let {pn}n∈N ⊂ R+ such that

∑
n∈N pn = 1; µ(E) =

∑
xn∈E pn is a proba-

bility measure.

Main properties The following are seven basic properties of the positive
measure. The setting is the measure space (Ω,M, µ).

Proposition 2.1.21
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Any positive measure of the empty set is zero:

µ(∅) = 0.

Proof. Take E ∈ M such that µ(E) < +∞, and let E0 = E, En = ∅ with
n ∈ N0. Then we apply countable additivity:

µ (∪j∈NEj) =
∑
j∈N

µ(Ej) =⇒ µ(E) = µ(E) +
∑
n∈N0

µ(∅).

Because µ(E) has finite measure, it has to be µ(∅) = 0. ■

Proposition 2.1.22
Any positive measure is finitely additive, namely:

µ

 n⋃
j=0

Ej

 =

n∑
j=0

µ(Ej).

Proof. Take a family of disjoint sets {E0, . . . , En} ⊂ M, and set Em = ∅
for every m > n. Using countable additivity, we have:

µ

 n⋃
j=0

Ej

 = µ

⋃
j∈N

Ej

 =
∑
j∈N

µ(Ej) =

n∑
j=0

µ(Ej)

and thus µ is also finitely additive. ■

Proposition 2.1.23
Any positive measure is monotone increasing with respect to the
partial order given by inclusion, namely:

µ(E) ≤ µ(F ) for all E,F ∈ M such that E ⊆ F.

Proof. As E and (F \ E) are disjoint, we have:

µ(F ) = µ(E ∪ (F \ E)) = µ(E) + µ(F \ E) ≥ µ(E).

■
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Proposition 2.1.24
Let µ be a positive measure and let E,F ∈ M such that E ⊂ F and
µ(E) < +∞.
Then:

µ(F \ E) = µ(F )− µ(E).

Proof. See the previous proof. ■

Proposition 2.1.25
Let µ be a positive measure and let {En}n∈N ⊂ M be an ascending
sequence, namely En ⊂ En+1.
Then:

µ(En) → µ

(⋃
n∈N

En

)
.

Proof. We build a sequence {Fn}n∈N taking Fn = En \ En−1: so we have
F0 = E0, F1 = E1 \ E0, and so on. {Fn} is a family of disjoint sets, with

⋃
j∈N

Fj =
⋃
n∈N

En = E and
n⋃

j=0

Fj = En.

Thus we have:

µ(En) = µ

 n⋃
j=1

Fj


=

n∑
j=0

µ(Fj)
n→+∞−−−−−→

∑
j∈N

µ(Fj) = µ

⋃
j∈N

Fj

 = µ

(⋃
n∈N

En

)
.

■

Proposition 2.1.26
Let µ be a positive measure and let {En}n∈N ⊂ M be a descending
sequence, namely En ⊃ En+1.
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If µ(E0) < +∞, then:

µ(En) → µ

(⋂
n∈N

En

)
.

This does not hold when µ(E0) = +∞. For example, take the measure
space (N,P(N), µC) and the sequence {En}n∈N, with

En = {n∗ : n∗ ∈ N, n∗ ≥ n} = {n, n+ 1, . . .}

. Then we have E0 ⊃ E1 ⊃ E2 ⊃ · · · and µ(En) = +∞ for any n, but
E = ∩n∈NEn = ∅.

The reader should try to do this proof before seeing the one provided.

Proof. We construct a sequence of ascending sets in order to take advantage
of the previous proposition.

Fn = E0 \ En ∀n ∈ N so that Fn ⊂ Fn+1.

Moreover we have:

µ(Fn) = µ(E0)− µ(En)
⋃
n∈N

Fn = E0 \
⋂
n∈N

En,

Using the previous property:

µ(Fn) → µ

(⋃
n∈N

Fn

)
Thus we have

µ(E0 \ En) → µ

(
E0 \

⋂
n∈N

En

)

µ(E0)− µ(En) → µ(E0)− µ

(⋂
n∈N

En

)

µ(En) → µ

(⋂
n∈N

En

)

as n goes to ∞. ■
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Proposition 2.1.27
Any positive measure µ is countably subadditive, namely:

µ

⋃
j∈N

Ej

 ≤
∑
j∈N

µ(Ej)

for any sequence {Ej}j∈N ⊂ M, where the set are not necessarily
disjoint.

Proof. We start by proving that µ(E ∪F ) ≤ µ(E) + µ(F ), with E,F ∈ M.
We can apply finite additivity and monotonicity on the two disjoint sets
G1 = E, G2 = F \ E:

µ(E ∪ F ) = µ(G1 ∪G2)
FA
= µ(G1) + µ(G2)

M
≤ µ(E) + µ(F ).

Now we generalize this result to finite unions. Let G0 = E0, Gn = En \{
∪n−1
j=0Ej

}
for all n > 0; we can easily see that the sets {Gj} are disjoint,

and thus:

µ

 n⋃
j=0

Ej

 = µ

 n⋃
j=0

Gj

 FA
=

n∑
j=0

µ(Gj)
M
≤

n∑
j=0

µ(Ej).

The proof is complete letting n → +∞. ■

Exercise 2.1.28 . Consider a set function µ that is countably subadditive
and finitely additive, and prove it is also countably additive.

At last, the characterization:

Proposition 2.1.29
Let (Ω,M) be a measurable space.
A set function µ : M → [0,+∞] is a positive measure if and only if
it is finitely additive and countably sub-additive.

Proof. The proof of the =⇒ part is trivial: countable additivity implies
sub-additivity and by choosing a suitable collection of sets one easily gets
finite additivity.

95



To prove the converse we argue as follows. Since µ ̸≡ +∞, there exists
E ∈ M such that µ(E) < +∞. Thus on account of finite additivity:

µ(E) = µ(E ∪∅) = µ(E) + µ(∅),

which implies µ(∅) = 0. Moreover it’s easy to see that E ⊂ F implies
µ(E) ≤ µ(F ), also for finite additivity:

µ(F ) = µ((F \ E) ∪ E) = µ(F \ E) + µ(E) ≥ µ(E).

Consider now {En} ⊂ M a family of countable disjoint sets. For any N ∈
N \ {0} using again finite additivity and the property we just showed:

µ

( ∞⋃
n=1

En

)
≥ µ

(
N⋃

n=1

En

)
=

N∑
n=1

µ(En)

then taking the limit as N → ∞ we get:

µ

( ∞⋃
n=1

En

)
≥

∞∑
n=1

µ(En)

on the other hand we have the other inequality from the countable sub-
additivity, so we have and equality (i.e. countable additivity). ■

Uniqueness of a measure The following theorem is well known in proba-
bility for proving the uniqueness of the probability15.

Theorem 2.1.30 (Dynkin’s lemma)
Let Ω ̸= ∅, E ⊂ P(Ω), such that E is closed with respect to finite
intersection and let a sequence {En} ⊂ E exists such that Ω =
∪nEn.
Let µ and ν be two measures on M = ⟨E⟩.
If µ(En) < +∞, ν(En) < +∞ for all n, and µ|E ≡ ν|E16, then
µ ≡ ν.

Example 2.1.31 . Take Ω = R, M = B(R) = ⟨{(a, b) : a, b ∈ R}⟩.
Suppose that it exists a Borel measure µ such that µ((a, b)) = b−a: in this
case µ is unique. This example can be easily generalized to multidimensional
case (RN ,B(RN )).

15In Italian that theorem is known as teorema delle classi monotone. See F. Bernardi,
G. Cerri, A. Di Nardo, G. Gabrielli, B. Guindani, S. Polito, A. Wussler, Appunti di
Probabilità - Edizione Lp, pages 32-34, section 3.1.1, theorem 3.4 .

16That is µ(E) = ν(E) ∀E ∈ E
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Complete measure This is another property that we will see is required
in a number of further results.

Definition 2.1.32
Let (Ω,M, µ) be a measure space.
We say that µ is complete if, for every A ∈ M such that µ(A) = 0
and for every E ⊂ A, E is M-measurable.

In plain language, a measure is complete if all the subsets of a zero-measure
set are measurable.

Theorem 2.1.33 (Completion of a measure space)
Let (Ω,M, µ) be a measure space.
Let also M∗ = {P ⊂ Ω | ∃ E,F ∈ M : E ⊂ P ⊂ F and µ(F \ E) = 0},
µ∗ such that µ∗(P ) = µ(E) for every P ∈ M∗.

Then M∗ is a σ-algebra, M∗ ⊃ M, and µ∗ is a complete measure.
The measure space (Ω,M∗, µ∗) is called completion of (Ω,M, µ).

Proof. Step 1, M∗ is a σ-algebra:
We prove the consistency of the definition of M∗ with the definition of
σ-algebra.

• To check that ∅ ∈ M∗, notice that ∅ ∈ M; so we can simply take
P = E = F = ∅.

• To check that M∗ is closed under complementation, take P ∈ M∗,
we have E ⊂ P ⊂ F with µ(F \ E) = 0, so EC ⊃ PC ⊃ FC with
µ(EC \ FC) = 0, and thus PC ∈ M∗.

• To check that M∗ is closed under countable union, let {Pn}n∈N ⊂ M∗,
then En ⊂ Pn ⊂ Fn with µ(Fn \ En) = 0 and n ∈ N.
Taking E =

⋃
n∈NEn ∈ M, P :=

⋃
n∈N Pn, and F =

⋃
n∈N Fn ∈ M,

we have E ⊂ P ⊂ F . Also:

µ(F \ E) = µ

(⋃
n∈N

(Fn \ En)

)
≤
∑
n∈N

µ(Fn \ En) = 0

and thus
⋃

n∈N Pn ∈ M∗.

Step 2, µ∗ is a well-defined set function:
Namely, we have to show that the value of µ∗(P ) = µ(E) does not change
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when choosing a different E.
Let P,E1, F1, E2, F2 ∈ M such that Ei ⊂ P ⊂ Fi and µ(Fi \ Ei) = 0.
Then we have E1\E2 ⊂ P \E2 ⊂ F2\E2, and thus µ(E1\E2) ≤ µ(F2\E2) =
0.
Because E1 = (E1 \E2)∪ (E1∩E2), we have µ(E1) = µ(E1∩E2). Similarly
we can prove that µ(E2) = µ(E2 ∩ E1), and finally that µ(E1) = µ(E2).

Step 3, µ∗ is a measure:
Finally we check that µ∗ is indeed a measure. First of all, µ∗(∅) = 0. Then,
consider {Pn}n∈N ⊂ M∗ such that Pi∩Pj = ∅ when i ̸= j. For every n ∈ N,
Ei ⊂ Pi ⊂ Fi, and thus Ei ∩ Ej = ∅ when i ̸= j. Therefore:

µ∗

(⋃
n∈N

Pn

)
= µ

(⋃
n∈N

En

)
=
∑
n∈N

µ(En) =
∑
n∈N

µ∗(Pn).

■

2.1.4 Lebesgue measure

Our goal is to build a complete measure space on RN . In particular we
want a measure defined for all the sets of the Borel σ-algebra, so we have
to define such measure on his σ-algebra M(RN ) ⊃ B(RN ).

First attempt In order to have a spendable definition, we need that our
measure λ̃ satisfies three properties: first, the measure of rectangles is the
product of the euclidean measure of its sides, namely:

λ(R) =

n∏
j=1

(bj − aj) for any R = (a1, b1)× · · · × (an, bn);

second, the measure has to be invariant with respect to any translation,
namely:

λ(E + x) = λ(E) ∀x ∈ RN ∀E ∈ M(RN );

and last, measure isn’t concentrated somewhere, namely:

∄ E ∈ M(RN ) such that λ(E) > 0 and ∀F ⊊ E : λ(F ) = 0.

If such kind of measure does exist, by Dynkin’s Lemma (2.1.30 on page 96)
we know that it is unique.
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Another questions is this, assuming that such measure exists, can we have
that M(RN ) = P(RN ), that is every subset of RN is measurable? Well, the
answer is no, and the explanation requires a little effort.

Definition 2.1.34
Let (Ω,M, µ) be a measure space.
A set A is an atom if it is a countable set, has µ(A) > 0, and it
does not contain any measurable subset E such that µ(E) > 0.

Example 2.1.35 . Consider (Ω,M, µt), where µt is the Dirac measure. Then
{t} is an atom.

Taking account of the previous definition, due to its third property, our
measure is surely non-atomic. The following theorem is proven through
the axiom of choice and the continuum hypothesis:

Theorem 2.1.36 (Ulam)
The only non-atomic measure on P(R) is the zero measure µ(E) =
0 for all E ∈ P(R).

This means that the σ-algebra on which our measure is built must be strictly
smaller than P(RN ) and this answers the question. So there are some sub-
sets of RN that can’t be measured by a measure with those sole proper-
ties.

Outer measure For the sake of simplicity from now on we will deal with R
instead of RN . It is easy to take the following results to the multidimensional
case in which, as theory guarantee, they hold as well. To work around the
problem our first step is the following, simpler, definition of something that
is not a positive measure.

Definition 2.1.37
We define the outer measure λ⋆ : P(R) → [0,+∞] as follows:

λ⋆(E) := inf
{In}n∈N

∑
n∈N

ℓ(In)

where In is an open interval for any n, ℓ(In) is its length, and⋃
n∈N In ⊃ E.

Notice that it is defined on the power set of R.
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Proposition 2.1.38 (Main properties of the outer measure)
Let λ⋆ be the outer measure, then:

• the outer measure is monotone increasing, namely:

E ⊂ F =⇒ λ⋆(E) ≤ λ⋆(F );

• the outer measure is countably subadditive.

• for any countable E ∈ P(R), λ⋆(E) = 0;

Proof of the countably subbaditivity. Consider {En}n∈N ⊂ P(R) and fix ε >
0. Then, by definition, for all n ∈ N there exists a sequence {Inj }j∈N such
that: ⋃

j∈N
Inj ⊃ En and

∑
j∈N

ℓ(Inj ) ≤ λ⋆(En) +
ε

2n+1
.

Now set E :=
⋃

n∈NEn, then we have E ⊂
⋃

n∈N
⋃

j∈N I
n
j ; we can observe

that:

λ⋆(E) ≤ λ⋆

⋃
n∈N

⋃
j∈N

Inj

 ≤
∑
n∈N

∑
j∈N

ℓ(Inj ) ≤
∑
n∈N

(
λ⋆(En) +

ε

2n+1

)
=
∑
n∈N

λ⋆(En)+ε.

Since ε is arbitrary, this gives us sub-additivity. ■

Proof of measure of countable sets. Let us prove that λ⋆({x0}) = 0, indeed:

λ⋆({x0}) = inf
ε>0

(x0 + ε− (x0 − ε)) = inf
ε>0

2ε = 0

Then using countable subadditivity we deduce that any countable set has
outer measure zero. ■

Carathéodory condition Outer measure is not a positive measure as it is
not finitely additive. If it was, it would be a non-atomic measure defined
on P(R), this contradicts Ulam’s theorem (2.1.36 on the preceding page).
To better understand this issue, consider E ∈ P(R) such that λ⋆(E) > 0,
pick x ∈ E and set F = E \ {x}. Notice that

λ⋆(E) = λ⋆(F ∪ {x}) ≤ λ⋆(F ) + λ⋆({x}) = λ⋆(F ).
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Moreover, by monotonicity λ(F )∗ ≤ λ(E)∗ so λ⋆(E) = λ⋆(F ). This shown
that the outer measure is not non-atomic.
Anyway our λ⋆ has the properties we are looking for: λ⋆((a, b)) = b −
a ∀a, b ∈ R and it is invariant with respect to any translation; a willing
reader can try to prove these properties.

All of those remarks are giving us an hint: maybe to make λ⋆ a measure
we only have to reduce the σ-algebra. So we could move our struggle from
the definition of a the measure to a restriction of the σ-algebra. Indeed, by
doing so, we can restore the finite additivity. This reasoning is completed
in the following results.

Definition 2.1.39
A set E ∈ P(R) satisfies the Carathéodory condition if:

λ⋆(T ) = λ⋆(T ∩ E) + λ⋆(T ∩ EC) for any T ∈ P(R).

Actually, “≥” is enough in the condition because “≤” is already given by
subadditivity.

Definition 2.1.40
The family of the sets that respect the Carathéodory condition is a
σ-algebra and is called Lebesgue σ-algebra:

L(R) := {E ⊂ P(R) : E satisfy the Carathéodory condition}.

Its elements are called Lebesgue sets17.

The Lebesgue measure fits also for “smaller” sets: consider any set Ω ∈
L(R). We can define L(Ω) by selecting only the subset which satisfy the
Carathéodory condition, and the Lebesgue measure on Ω is simply the re-
striction of the Lebesgue measure.

Definition 2.1.41
The restriction of λ⋆ to L(R) is called Lebesgue measure.

To conclude the discussion we come back to the main doubt: is the Lebesgue
measure actually a measure? Yes, and the following result confirm the
conclusion of our quest.

17For the proof that L is a σ-algebra and many other results, see: H. L. Royden, Real
Analysis, pages 251-253, section 12.1, theorem 1 .
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Theorem 2.1.42
The Lebesgue measure is finitely additive.

Proof. Consider two disjoint sets A,B ∈ L(R), and let T = A∪B. We have

λ⋆(A ∪B) = λ⋆(T )
CC
= λ⋆(T ∩A) + λ⋆(T ∩AC) = λ⋆(A) + λ⋆(B).

This shows the thesis as it is trivial to extend this argument to any finite
number of set. ■

Properties and relevant facts about the Lebesgue measure Here some
proposition deduced by previous results to complete our discussion.

Proposition 2.1.43
The Lebesgue σ-algebra contains the Borel σ-algebra:

L(R) ⊃ B(R).

Proof. Step 0, the goal :
To complete this proof, thanks to the generative properties of σ-algebras,
is sufficient to prove that (a,+∞) ∈ L(R), satisfying the Carathéodory
condition.
Step 1, infinite sets:
Now consider all the subset T of R. If λ⋆(T ) = +∞, then it is easy to see
that λ⋆(T ) ≥ λ⋆(T ∩ (a,+∞)) + λ⋆(T ∩ (a,+∞)C).
Step 2, finite sets:
Consider now T such that λ⋆(T ) < +∞ and fix ε > 0; then there exists a
sequence of set {In}n∈N such that:

T ⊂
⋃
n

In and
∑
n

ℓ(In) ≤ λ⋆(T ) + ε;

by setting I1n := In ∩ (a,+∞) and I2n := In ∩ (−∞, a+ ε
2n ) we have that:

ℓ(In) +
ε

2n
≥ ℓ(I1n) + ℓ(I2n).

Consider now the following two set:

T1 := T ∩ (a,+∞) and T2 := T ∩ (−∞, a].
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By the previous definition we have that
⋃

n I
1
n ⊃ T1 and

⋃
n I

2
n ⊃ T2. Thus,

by monotonicity, λ⋆(T1) ≤
∑

n ℓ(I
1
n) and λ⋆(T2) ≤

∑
n ℓ(I

2
n).

Summing up, we have:

λ⋆(T1) + λ⋆(T2) ≤
∑
n

ℓ(I1n) +
∑
n

ℓ(I2n)

≤
∑
n

ℓ(In) +
∑
n

ε

2n

≤ λ⋆(T ) + 2ε.

Taking ε → 0 we have that λ⋆(T1)+λ⋆(T2) ≤ λ⋆(T ), and the Carathéodory
condition holds for (a,+∞). ■

The inclusion is strict, indeed it can be proven that the cardinality of B(R)
is 2ℵ0 . However, we have that the Cantor set (see definition 1.2.89 on
page 67), which belongs to B(R) since in the construction we use operations
which do not bring us outside the sigma algebra, is uncountable (ℵ1) and
L-measurable (zero measure). By completeness of the Lebesgue measure,
all its subsets are measurable, hence P(C) ∈ L(R), but its cardinality is at
least 2ℵ1 = 22

ℵ0 , hence P(C) cannot be contained in B(R).

Proposition 2.1.44
The Lebesgue measure space (R,L(R), λ⋆) is complete.

Proof. Take E, N such that E ⊂ N and λ(N) = 0. We need to prove that
E is measurable.
First of all, for all T ∈ P(R), we have that T ∩ E ⊂ T ∩N ⊂ N , and thus
λ⋆(T ∩ E) = 0 by monotonicity.
We also have that T ∩ EC ⊂ T , and so λ⋆(T ∩ EC) ≤ λ⋆(T ).
Summing up, λ⋆(T ) ≥ λ⋆(T ∩E)+λ⋆(T ∩EC), E respects the Carathéodory
condition, and thus it is measurable. ■

In particular, (R,L(R), λ⋆) is the completion of (R,B(R), λ⋆). Indeed, the
restriction of the measure to the Borel σ-algebra, namely λ|B(R), is a Borel
measure, but it is not complete.

Let us clarify the relationship between Lebesgue and Borel sets (recall def-
inition 2.1.6 on page 82).
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Proposition 2.1.45
The following statements are equivalent:

1. E ∈ L(R);

2. for all ε > 0, there exists A open set such that A ⊃ E and
λ(A \ E) < ε;

3. for all ε > 0, there exists C closed set such that C ⊂ E and
λ(E \ C) < ε;

4. there exists a Gδ set G ⊃ E such that λ(G \ E) = 0;

5. there exists a Fσ set F ⊂ E such that λ(E \ F ) = 0.

Thus every Lebesgue set E can be written as E = F ∪ (E \ F ), where F is
a Fσ set, and thus F ∈ B(R), E \ F ∈ L(R) and λ(E \ F ) = 0.

Proof. We will proof that 1 implies 2 which implies 4 which implies 1.

Step 1, 1 implies 2 :
Start by considering λ(E) < +∞. Then, for all ε > 0 there exists a sequence
{In}n∈N ⊂ R such that:⋃

n∈N
In ⊂ E,

∑
n∈N

λ(In) ≤ λ(E) + ε.

Set A :=
⋃

n∈N In, then A ⊃ E and λ(A \ E) < ε. As λ(E) = +∞, by
setting En = E ∩ [−n, n] we have = ∪n∈NEn and λ(En) < +∞.

From the previous point we know that there exists an open set An such
that:

λ(An \ En) ≤
ε

2n+1
.

Set A :=
⋃

n∈NAn ⊃ E and observe that:

λ(A \ E) ≤
∑
n∈N

λ(An \ En) ≤
∑
n∈N

ε

2n+1
= ε.

This proves the implication.

Step 2, 2 implies 4 :
Observe that for all n ∈ N0, there exists an open set An ⊂ E such that:

λ(An \ E) <
1

n
.
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Set G :=
⋂

n∈N0
An, then

λ(G \ E) ≤ λ(An \ E) <
1

n
∀n ∈ N0.

Let n → +∞ to get λ(G \ E) = 0. This concludes this second proof.

Step 3, 4 implies 1 :
As we can write E = G\(G\E), we have E ∈ L(R). This because G ∈ B(R)
and (G \ E) ∈ L(R); in particular, we know that its measure is zero.

Step ∞:
You should prove that 1 implies 3 which implies 5 which implies 1. To do
this use the complements! ■

Finally, observe that L(R) ⊈ P(R) due to Ulam’s theorem.

We can extend our considerations about Lebesgue measure to RN and define
the measure space (RN ,L(RN ), λ). In the construction of λ∗ we can simply
consider multidimensional intervals and the euclidean n-volume:

I = (a1, b1)× · · · × (aN , bN ), V (I) =
N∏
i=1

(bi − ai).

Vitali’s theorem This theorem conclude our discussion on the Lebesgue
theory. It requires the axiom of choice!

Theorem 2.1.46 (Vitali)
Any set E ∈ L(R) with λ(E) > 0 contains a subset which is not
Lebesgue-measurable.

Proof. Without loss of generality, we will prove the theorem for the case
E = [0, 1].

In E = [0, 1], consider the equivalence relation a ∼ b ⇐⇒ a − b ∈ Q
and take the quotient set E

∼ . Obviously, one of the equivalence classes in
this quotient set contains any and all the rational numbers in E, because
the difference of two rationals is rational, so they are equivalent. And in
the other classes there are essentially an irrational and the rational trans-
lations. Using the axiom of choice, let us pick an element from each of the
equivalence classes, and define V ⊂ E as the set composed of these picked
elements. The set V is called Vitali set.
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Then we have:

(V + r) ∩ (V + s) = ∅ ∀r, s ∈ Q : r ̸= s,

where (V + a) denotes the set created by translating the elements of V by
a.
Otherwise, there would exist a, b ∈ V, a ̸= b (namely a − b /∈ Q) being
representative of different classes, such that a+ r = b+ s, that is, a− b =
s− r ∈ Q. Contradiction.

Again by contradiction, suppose that V is λ-measurable. As R =
⋃

r∈Q(V+
r), which is a countable union of disjoint sets, we have:

+∞ = λ(R)

= λ

⋃
r∈Q

(V + r)


=
∑
r∈Q

λ(V + r) (σ-additivity)

=
∑
r∈Q

λ(V). (properties of λ)

If λ(V) = 0 we get a contradiction and the proof is finished, let’s proceed
then with λ(V) > 0.

Now set F :=
⋃

r∈Q∩E(V + r) ⊂ [0, 2]. Via σ-additivity, one has:

λ(F ) =
∑

r∈Q∩E
λ(V + r) =

∑
r∈Q∩E

λ(V) = +∞.

But this is impossible, because λ(F ) ≤ λ([0, 2]) = 2 by monotonicity.
Therefore, V cannot be λ-measurable. Hence we get a contradiction and
the proof is finished. ■

For further reading, try to think (or Google) what is the outer measure of
a Vitali set.
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2.2 Abstract integration

Measures are about sets, but how about functions? Abstract and theoretical
concepts that we explored up to now can be employed to produce a notion
of integral.

Riemann integral, which is studied in lower calculus courses, take with him
many issues and in many cases it does not provide the answers we are
looking for. In order to develop a more powerful integral the first steps here
are to define a very general notion of integral, the abstract integral, which
can be used only on a very basic kind of function, called simple functions,
and study some immediate yet useful result.

Before find the solution of our problem in the next section, we will discuss
also some fundamental result of derivatives.

2.2.1 Abstract integral

The setting is very general; we will not fix neither the measure space nor the
measure, for instance we could use the Lebesgue measure as the counting
measure. From now on, we only require that (Ω,M, µ) is a compete measure
space.

Definition 2.2.1
We define the abstract integral of a simple function s as follows:∫

E
s dµ :=

N∑
j=1

ajµ(E ∩ Ej).

Simple functions are defined in definition 2.1.14 on page 87. Notice that∫
E s dµ =

∫
Ω s1E dµ.

Given a simple function and the notion of integral it’s possible to define a
new measure.

Proposition 2.2.2
The set function ν(E) =

∫
E s dµ, defined on any E ∈ M, is a

measure on M.

You can prove this proposition... do it! This result has a great importance
as we will see after.
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First thing to improve the notion of abstract integral is to expand the range
of function that can be measured. The improvement we made in the next
definition consist of extend the notion to any positive function; this thanks
to combining the abstract integral with the notion of limit.

Definition 2.2.3
For any measurable function f : Ω → [0,+∞], we define its Lebesgue
abstract integral for positive functions:∫

E
f dµ := sup

0≤s≤f

∫
E
s dµ ∈ [0,+∞]

where s is a simple function.

To guarantee the measurability of sums (f + g) and products (fg) of mea-
surable functions we implicitly used an arithmetization similar to the one
on R⋆; the following rules holds for a ≥ 0:

a+∞ = +∞+ a = +∞;

a · (+∞) = (+∞) · a = +∞;

0 · (+∞) = (+∞) · 0 = +∞.

This is formally a partial arithmetization on [0,+∞].

This integral is a much more general notion compared to the Riemann
integral on R. With Riemann integrals, we had very strict criteria for
integrability; now almost any function has a Lebesgue integral. Moreover,
with Lebesgue we do not have to build a supplementary notion of improper
integral.

The Riemann integral is built starting from intervals (which have an eas-
ily computable size) on Ω, the domain of integration. With the Lebesgue
integral, one is splitting the codomain into intervals instead. Since their
preimages may not be intervals, one needs a measure to define the size of
such preimages. For the Riemann integral, the Peano measure for intervals
is implicitly used.

Proposition 2.2.4 (Basic properties of the Lebesgue integral)
The following properties holds:

1. monotonicity with respect to functions:
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if f ≤ g, then
∫
E fdµ ≤

∫
E gdµ ∀E ∈ M;

2. monotonicity with respect to sets:

if E,F ∈ M and E ⊆ F , then
∫
E f dµ ≤

∫
F f dµ;

3. homogeneity:

for any α ≥ 0,
∫
E αf dµ = α

∫
E f dµ;

4. annihilation with respect to null functions

if f = 0 in E, then
∫
E f dµ = 0;

5. annihilation with respect to zero-measure sets

if µ(E) = 0, then
∫
E fdµ = 0.

The proofs can be easily achieved from foretold definitions.

2.2.2 Monotone convergence theorem and Fatou’s lemma

There are three important results on exchange between limits and integral
of sequences of functions: the Levi’s monotone convergence theorem, the
Fatou’s lemma and the dominated convergence theorem. This section is
devoted to study the first two. The third one will be discussed in the
section 2.3.2 on page 119.

Monotone convergence theorem The following is a very useful theorem
by an Italian mathematician, Beppo Levi. It provides a way to exchange
limits between integrals and sequences of functions.

Theorem 2.2.5 (Beppo Levi’s monotone convergence theorem)
Let fn : Ω → [0,+∞] be a measurable and monotone non-decreasing
sequence of function; that is for any t ∈ Ω, fn+1(t) ≥ fn(t), for all
n ∈ N.
Then f(t) := lim

n→∞
fn(t) is measurable and:

lim
n→+∞

∫
Ω
fn dµ =

∫
Ω

lim
n→+∞

fn dµ =

∫
Ω
f dµ.

Notice that, by setting f = limn→+∞ fn, we know that f is measurable,
as it coincides with the supremum (see theorem 2.1.13 on page 86 and the
following proof).
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Proof. Step 0, initial setting :
Consider the sequence of real numbers

{∫
Ω fn dµ

}
n∈N, as it is monotone

non-decreasing, its limit exists and it’s the supremum:

α = lim
n→+∞

∫
Ω
fn dµ = sup

n∈N

∫
Ω
fn dµ ∈ [0,+∞].

Step 1, proof of
∫
Ω fdµ ≥ α:

Since fn(t) ≤ f(t), we have:

α = sup
n∈N

∫
Ω
fndµ ≤ sup

n∈N

∫
Ω
fdµ =

∫
Ω
fdµ.

Step 2, proof of
∫
Ω fdµ ≤ α:

Fix c ∈ (0, 1) and s, an arbitrary simple function such that 0 ≤ s ≤ f .
Now set

En := {t ∈ Ω : fn(t) ≥ cs(t)},

where 0 ≤ cs(t) ≤ fn(t) ≤ f(t) for t ∈ En.
Recalling that fn is a non-decreasing sequence, it is easy to see that En is
ascending, that is E1 ⊆ E2 ⊆ · · · .

Now, take any t ∈ Ω. If f(t) = 0, then s(t) = 0 as well and t ∈ En0 for any
n0.
If instead f(t) > 0 (f is non-negative), since f(t) = supn∈N fn(t), there is
room for one more value between cs(t) and f(t), that is:

∃n0 ∈ N : f(t) ≥ fn0(t) ≥ cs(t).

Thus t ∈ En0 . Recall that both the sequence of sets and the sequence of
integrand functions are monotonous.
Notice an important step here, c cannot be equal 1. Indeed, if c = 1 think of
a situation when the limit function f(t) is flat at some point, then the simple
function coincides with f in that portion. But if this is the case, we can’t
find an n0 such that fn fits in between, unless it reaches the limit in finite
steps.18 Since every t is part of a certain En, it follows that Ω =

⋃
n∈NEn.

Observe that if c were greater than or equal to 1 and also f(t) = s(t) for
some t, then t /∈ En for any n.

18But this hardly ever happens.
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Finally:

α ≥
∫
Ω
fndµ ≥

∫
En

fndµ ≥ c

∫
En

s(t)dµ = cν(En)

and cν(En)
n→∞−−−→ cν(Ω), therefore α ≥ cν(Ω) = c

∫
Ω sdµ for any c ∈ (0, 1)

and for any simple function s such that 0 ≤ s ≤ f .
Taking the superior limit on both sides we have:

α ≥ c sup
0≤s≤f

∫
Ω
s dµ = c

∫
Ω
f dµ →

∫
Ω
f dµ as c → 1−.

Thus we have α ≥
∫
Ω f dµ. ■

Observe that, if we have a sequence of simple functions {sn}n∈N such that
sn(t) ↑ f(t) for all t ∈ Ω, then, thanks to this theorem, we have:

∫
Ω f dµ =

lim
n→∞

∫
Ω sn dµ.

Beppo Levi’s theorem is a very useful tool in many proof and it has some
interesting consequences.

Proposition 2.2.6 (Additivity of the abstract integral)
Let (Ω,M, µ) be measurable space, f, g : Ω → [0,+∞] measurable.
Then: ∫

E
(f + g)dµ =

∫
E
fdµ+

∫
E
gdµ

Proof. Consider a sequence of simple functions {s1n}, which is monotonically
increasing, namely s1n+1 ≥ s1n ∈ Ω, and converges point-wise to a function
f , namely

s1n(t) ↑ f(t) ∀t ∈ Ω.

Consider also another monotonic sequence of simple function {s2n} which
converges point-wise to g.
Define the sequence of the sum: sn = s1n + s2n; it monotonically converges
point-wise to the sum of f and g, namely

sn ↑ f + g.
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You, reader, should prove, from definition 2.2.1 on page 107, that the inte-
gral for simple functions is additive19:∫

E
(s1n + s2n)dµ =

∫
E
s1ndµ+

∫
E
s2ndµ =

∫
Ω
s1n1Edµ+

∫
Ω
s2n1Edµ

Now we can use monotone convergence theorem to exchange the limit with
the integral obtaining the thesis:∫

E
(f + g)dµ =

∫
E

lim
n→+∞

sndµ

= lim
n→+∞

∫
E
(s1n + s2n)dµ

= lim
n→+∞

∫
Ω
(s1n + s2n)1Edµ

= lim
n→+∞

∫
Ω
s1n1E +

∫
Ω
s2n1Edµ

=

∫
E
fdµ+

∫
E
gdµ.

■

This theorem is a version of monotone convergence which holds for series
of functions:

Corollary 2.2.7 (Monotone convergence theorem for series)
Let (Ω,M, µ) be a measure space, and functions fn : Ω → [0,+∞]
measurable for all n ∈ N.
Then

∑
n∈N fn converges point-wise to a measurable function f , and

we have: ∫
Ω
fdµ =

∫
Ω

∑
n∈N

fndµ =
∑
n∈N

∫
Ω
fndµ.

Proof. We have a series of positive functions whose sequence of partial sum
is monotone: set Fk(t) =

∑k
i=0 fi(t).

The sequence of simple functions {sk} is measurable for any n ∈ N and is
monotone: sk+1 ≥ sk in Ω; than it converges point-wise to a measurable

19To prove this, define the integral on Ω by applying the indicative function to s.
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function f .
Using the finite additivity we have:∫

Ω
Fkdµ =

k∑
i=0

∫
Ω
fidµ.

Apply the standard monotone convergence theorem to gain the thesis:∫
Ω
fdµ =

∫
Ω
limFndµ = lim

∫
Ω
Fkdµ =

∞∑
i=0

∫
Ω
fidµ.

■

Consider the measure space (N,P(N), µc), where µc is the counting measure.
On this space, the non-negative measurable functions are actually non-
negative sequences of real numbers: f(n) = an with n ∈ N.
In this case the corollary implies that we can exchange series:∑

m∈N

∑
n∈N

amn =
∑
n∈N

∑
m∈N

amn amn ≥ 0 ∀m,n.

Fatou’s Lemma The following simple but powerful result, proved for the
first time by the french mathematician Pierre Fatou, is more general than
the previous, as it does not require the monotonicity of the sequence, but
it is restricted to the inferior limit.

Theorem 2.2.8 (Fatou’s lemma)
Let fn : (Ω,M, µ) → [0,+∞] be measurable for any n ∈ N. Then:∫

Ω
lim inf
n→+∞

fn dµ ≤ lim inf
n→+∞

∫
Ω
fn dµ.

Sometimes the strict inequality may hold.

Example 2.2.9 . Take (R,L(R), λ), consider:

fn(t) =

{
1
n |t| ≤ n

0 |t| > n
∀n ∈ N0.
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n

1/n

−n 0

Figure 2.3: Plot of the function of example 2.2.9 on the preceding page.

Then the lim inf
n→+∞

fn(t) = 0 for all t ∈ R but
∫
R fndλ = 2 > 0 ∀n ∈ N0.

Proof. Set gn(t) = infj≥n fj(t). So gn is measurable and gn+1 ≥ gn in Ω.
By definition of inferior limit we have:

sup
n∈N

gn = lim inf
n→∞

fn.

Using the monotone convergence theorem we get:

lim
n→+∞

∫
Ω
gndµ =

∫
Ω

lim
n→+∞

gndµ =

∫
Ω
lim inf
n→+∞

fndµ

By integral’s monotonicity we obtain:∫
Ω
gndµ ≤

∫
Ω
fndµ;

and considering the previous point we have:

lim
n→+∞

∫
Ω
gndµ ≤ lim inf

n→+∞

∫
Ω
fndµ

which prove the thesis. ■

2.2.3 Derivative of a measure: definitions

Measures defined through measurable functions Here we see how a pos-
itive measurable function can provide an alternative measure.

Theorem 2.2.10

114



Let ϕ : Ω → [0,+∞] be a measurable function. Consider:

ν(E) :=

∫
E
ϕ dµ for all E ∈ M.

Then, for any measurable function f : Ω → [0,+∞], ν(E) is a
measure on M, and we have:∫

Ω
f dν =

∫
Ω
fϕdµ.

Proof. Step 1, ν(E) is a measure on M:
It is easy to see that ν(∅) = 0 < +∞.
Consider a sequence of mutually disjoint set {Ej}j∈N ⊂ M with E =⋃

j∈NEj ; using the monotone convergence for series (see corollary 2.2.7 on
page 112), we have:

ν(E) =

∫
E
ϕ dµ =

∫
Ω
ϕ1E dµ =

∫
Ω

∑
j∈N

ϕ1Ej dµ

=
∑
j∈N

∫
Ω
ϕ1Ej dµ =

∑
j∈N

∫
Ej

ϕ dµ =
∑
j∈N

ν(Ej);

thus ν is countably additive.

Step 2, exchange of measures:
Now let us focus on the second thesis of the theorem. It is enough to prove
it when f = 1E with E ∈ M; then it can be easily extended to simple
function and finally to positive functions by its approximation property.
We have: ∫

Ω
1E dν =

∫
E
dν = ν(E) =

∫
E
ϕ dµ =

∫
Ω
ϕ1E dµ;

that conclude the proof. ■

In the first part of this proof we proved the following.

Corollary 2.2.11
Let ϕ be a positive and measurable function, and consider a se-
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quence of disjoint sets {En}n∈N. Then:∫
∪n∈NEn

ϕ dµ =
∑
n∈N

∫
En

ϕ dµ.

Radon–Nikodym derivative Suppose to have two measure, and we need
to represent one in terms of the other. Possibly through an integral. This
is possible by the followings.

Definition 2.2.12
Consider a complete measure space (Ω,M, µ) and a non-negative
measurable function ϕ : Ω → [0,+∞]. If ν is such that:

ν(E) =

∫
E
ϕ dµ for all E.

Then ϕ is called Radon–Nikodym derivative of ν with respect to µ
and it is denoted by dν

dµ .

The integrand function is called “derivative” due to the analogy with the
first fundamental theorem of calculus (see theorem 2.4.4 on page 145) for
which we have F (x) =

∫ x
a F ′(t) dt.

For any measurable function f : Ω → [0,+∞] we can write:∫
E
f dν =

∫
E
fϕdµ =

∫
E
f
dν

dµ
dµ

Since we give the definition of Radon–Nikodym derivative, we ask ourselves
if such function exists positive and measurable. We start observing that
whenever the measure µ is zero on a set E, ν(E) must be zero too (otherwise
we would have a null denominator and a non-null denominator). Indeed, if∫
E f dν =

∫
E f dν

dµ dµ, then we require:

µ(E) = 0 =⇒ ν(E) = 0 for all E ∈ M.

This motivates the following definition.

Definition 2.2.13
We say that a measure ν is absolutely continuous with respect to
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µ, and we write ν ≪ µ, if:

µ(E) = 0 =⇒ ν(E) = 0 for any E ∈ M.

In plain language, a measure ν is absolutely continuous with respect to µ if
on all the sets for which µ is zero, ν is also zero.

This property holds when a measure can “control” the zero of another mea-
sure, it acquire a great meaning when considered with the previous defi-
nition: the measure µ controls the measure ν which was defined through
µ.

However, the condition ν ≪ µ is not sufficient alone for the existence of
dν
dµ ; a sufficient condition for its existence in stated by the following theo-
rem.

Theorem 2.2.14 (Radon–Nikodym)
Let (Ω,M, µ) be a complete measure space, and ν, µ two measures
on (Ω,M).
If µ is σ-finite and ν ≪ µ, then the Radon–Nikodym derivative dν

dµ
exists.

See definition 2.1.17 on page 90 for σ-finite. The theorem will be proved
later on section 3.4.4 on page 271.

If µ is not σ-finite, then the existence of dν
dµ is not guaranteed.

Indeed, consider the measure space ([0, 1] ,L([0, 1]), µc) where µ is the count-
ing measure and let ν = λ ≪ µc. You can prove that there is no measure
ϕ : [0, 1] → [0,+∞] such that λ(E) =

∫
E ϕ dµc ∀E ∈ L([0, 1]).

We will see that this is a powerful generalization of the second fundamental
theorem of calculus (see theorem 2.4.11 on page 150).
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2.3 Lebesgue Integral

Till now we worked only with positive valued functions, but they are not
suitable for many application. The work of Henry Lebesgue (1875 - 1941)
was not limited to those function, but it covered the case of a generic real
valued function. Our aim now is to define the well-know integral named
after him.

2.3.1 Integrating real valued functions

The first step is to establish what functions are integrable. Indeed, we
already have a notion of Lebesgue integral, even it is limited to real valued
functions we can use it to distinguish between functions. Any absolute
value of a real valued function is a positive valued function; so the notion
we already have can be used to define a space of integrable functions.

Definition 2.3.1
Let (Ω,M, µ) be a measurable space.
We define the space of Lebesgue-integrable functions as follows:

L1(Ω,M, µ) := {f : Ω → R : f measurable and such that
∫
Ω
|f | dµ < +∞}.

Notice that need the hypothesis of measurability for this definition to have
sense; take for instance the space ([0, 1] ,L([0, 1]), λ), and consider the Vitali
set V ⊂ [0, 1]. Define f as follows:

f(t) :=

{
1 if t ∈ V
−1 if t ∈ VC

.

While f is not measurable, |f | is.

Here we can define an integral for real valued functions.

Definition 2.3.2
Let f ∈ L1(Ω,M, µ). We define the Lebesgue abstract integral of
f as follows: ∫

Ω
fdµ :=

∫
Ω
f+dµ−

∫
Ω
f−dµ
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where f+ = max{f, 0} and f− = −min{f, 0}.
In this case f is called Lebesgue integrable function.

Notice that 0 ≤ f+ ≤ |f | and 0 ≤ f− ≤ |f | are both finite, thus also
∫
Ω fdµ

is finite, indeed we have just defined the Lebesgue abstract integral.

For a complete discussion we present the following proposition. The notion
of vector spaces will be discussed later (see definition 3.1.1 on page 171).

Proposition 2.3.3
The set L1(Ω,M, µ) is a vector space on R with respect to the
canonical operations f + g, c · f (c ∈ R). Indeed, the following
inequalities holds:∣∣∣∣∫

Ω
f dµ

∣∣∣∣ ≤ ∫
Ω
|f | dµ,

∫
Ω
|f + g|dµ ≤

∫
Ω
|f |dµ+

∫
Ω
|g|dµ.

This last property, which is, in some sense, a generalization of triangular
inequality, allow us to build an algebraic structure on this set.

Integrating on R’s intervals, the sign of the integral depends on its orienta-
tion. Here we define the actual standard.

Definition 2.3.4
Consider (R,L(R), λ), for any interval (a, b) ⊂ R we set this rule to
change the orientation of the interval:

∫ b

a
fdλ :=


∫ b
a fdλ if a < b

0 if a = b

−
∫ a
b fdλ if a > b.

Finally, a remark about series and the counting measure. Consider the
measure space (N,P(N), µc): the series {an}n∈N is Lebesgue integrable if
and only if

∑
n∈N |an| < +∞.

2.3.2 Dominated convergence theorem

Having defined a general yet powerful notion of integral, our focus now is on
building many tools that allow us to work on it. Some results are already
been proved, the following result extend the monotone convergence (see
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2.2.5 on page 109) and the Fatou’s lemma (see 2.2.8 on page 113) to real
valued functions.

Theorem 2.3.5 (Lebesgue’s dominate convergence theorem)
Let (Ω,M, µ) measure space, fn : Ω → R measurable for all n ∈ N
such that:

• it point-wise converges fn(t) → f(t) as n → +∞ for any t ∈ Ω;

• exists a dominating function, namely g : Ω → R, which is
Lebesgue-integrable and such that |fn(t)| ≤ g(t) for all t ∈ Ω
and for all n ∈ N.

Then fn, f ∈ L1(Ω,M, µ), and we have:

lim
n→∞

∫
Ω
|fn − f |dµ = 0

Observe that the thesis implies the following:

lim
n→+∞

∫
Ω
fndµ =

∫
Ω
fdµ;

indeed: ∣∣∣∣∫
Ω
fndµ−

∫
Ω
fdµ

∣∣∣∣ ≤ ∫
Ω
|fn − f |dµ → 0 as n → +∞.

This shows how powerful and general is this theorem. In general the issue
emerging when using it is to find a proper dominating function.

Proof. Using the fact that |fn(t)| ≤ g(t), it is easy to check from the defi-
nition that fn ∈ L1(Ω,M, µ) for any n ∈ N.
In addiction, we know f ∈ L1(Ω,M, µ), as |f(t)| = lim

n→∞
|fn(t)| for all n ∈ N;

this because:
| |f(t)| − |fn(t)| | ≤ |f(t)− fn(t)| → 0.

To prove the limit consider ϕn = 2g − |fn − f |.
We have that ϕn are measurable, non-negative and converging: ϕn(t) →
2g(t) for any t ∈ Ω.
Owing to Fatou’s lemma we have:

0 ≤
∫
Ω
2g dµ =

∫
Ω

lim
n→+∞

ϕn dµ
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≤ lim inf
n→+∞

∫
Ω
ϕn dµ

=

∫
Ω
2g dµ+ lim inf

n→+∞

∫
Ω
(−|fn − f |) dµ.

So we get:

0 ≤ lim inf
n→+∞

∫
Ω
−|fn − f |dµ

which implies

lim sup
n→+∞

∫
Ω
|fn − f |dµ ≤ 0

and from this we can deduce the thesis:

lim
n→+∞

∫
Ω
|fn − f |dµ = 0.

■

Case of series of functions The theorem can be formulated also for series
of function as follows. To deeply understand this results remember that a
series can be seen as the sequence of partial sum.

Theorem 2.3.6 (Dominate convergence theorem for series)
Consider a sequence of functions {fn}n∈N ⊂ L1(Ω,M, µ) for any
n ∈ N such that the series

∑
n∈N fn(t) converges point-wise ∀t ∈ Ω,

namely: ∑
n∈N

∫
Ω
|fn| dµ < +∞.

If exists a function g ∈ L1(Ω,M, µ) such that:∣∣∣∣∣∣
n∑

j=0

fj(t)

∣∣∣∣∣∣ ≤ g(t) ∀n ∈ N ∀t ∈ Ω,

then
∑

n∈N fn converges point-wise in Ω to a function f ∈ L1(Ω,M, µ)
and we have:∫

Ω
f dµ =

∫
Ω

∑
n∈N

fn dµ =
∑
n∈N

∫
Ω
fn dµ
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Proof. Consider
∑

n∈N |fn| and observe that, by Beppo Levi’s theorem:∫
Ω

(∑
n∈N

|fn|

)
dµ =

∑
n∈N

∫
Ω
|fn| dµ < +∞.

Then
∑

n∈N |fn| converges a.e. in Ω to a f̃ ∈ L1(Ω,M, µ). Thus we also have
that

∑
n∈N fn (absolutely) converges to some f a.e. in Ω, and moreover:∣∣∣∣∣

N∑
n=0

fn(t)

∣∣∣∣∣ ≤
N∑

n=0

|fn(t)| ≤
+∞∑
n=0

|fn(t)| = f̃(t)

For almost any t ∈ Ω and for all N .

Thus we can apply dominated convergence to

FN (t) :=
N∑

n=0

fn(t) → f(t).

We have that f ∈ L1(Ω,M, µ), and:∫
Ω
f dµ = lim

N→∞

∫
Ω
FN dµ = lim

N→∞

N∑
n=0

∫
Ω
fn dµ =

∑
n∈N

∫
Ω
fn dµ.

■

Notice that if
∫
Ω

∑
n∈N |fn|dµ < +∞ then

∑
n∈N |fn| is finite a.e. in Ω and∑

fn converges a.e. in Ω.

2.3.3 The almost everywhere concept

By construction, Lebesgue integral is not conditioned by single points. In
particular a countable set of points does not affect the result. At this point
we have to ask ourself if this concept holds also for other properties. Suppose
for example that a function satisfy a property except for a countable set of
points, can we still apply the theorems that requires such property? The
goal of this section is to extend all the previous results of abstract integration
to functions defined up to a zero-measure set.
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Definition 2.3.7
A certain property P (t), with t ∈ Ω holds almost everywhere (a.e.)
in Ω if:

µ({ t ∈ Ω : ¬P (t) }) = 0.

Example 2.3.8 . The properties P (t) = {sin(t) ̸= 0} and Q(t) = {1Q = 0}20

hold a.e. in R.

Extension of the measurability The first property that we extend to this
context from the general one is measurability:

Definition 2.3.9
Let (Ω,M, µ) be a complete measure space and (X, τ) a topological
space.
A function f : (Ω,M, µ) → (X, τ) is measurable almost every-
where in Ω if both

there exists Ω0 ⊂ Ω such that µ(ΩC
0 ) = 0

and
f−1(A) ∩ Ω0 ∈ M for all open set A ⊂ X.

This say that we require that the preimage of the function, intersected with
a set Ω0 whose complement has zero measure, is still measurable: in this
case the function is said to be measurable almost everywhere. In this way
the function can be defined (or not) in ΩC

0 in any manner without affecting
its measurability.

It is easy to see that all the results proved so far, in particular Beppo Levi’s,
Fatou’s and Lebesgue’s, can be reformulated for functions defined almost
everywhere and they still holds.

Essentially boundedness In this context it is useful to give another defi-
nition of boundedness.

Definition 2.3.10
A function f : (Ω,M, µ) → R is essentially bounded if exists M ≥ 0

20The function 1Q, which is the indicator function on the rational number set, is called
Dirichlet function.
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such that:
µ({t ∈ Ω : |f(t)| > M}) = 0.

The concept of almost everywhere allow us to redefine the supremum and
the infimum of functions as well.

Definition 2.3.11
Let f : Ω → R be a measurable function.
Then we define its essential supremum in Ω as follows:

ess sup
t∈Ω

f := inf{M ≥ 0 : µ({t ∈ Ω : |f(t)| > M}) = 0},

and the essential infimum in Ω as follows:

ess inf
t∈Ω

f := sup{M ≥ 0 : µ({t ∈ Ω : |f(t)| < M}) = 0}.

Example 2.3.12 . Consider for example the Dirichlet function f(t) = 1Q(t)
with t ∈ R. It is bounded and

sup
R

f = max
R

f = 1;

it is essentially bounded as well, however:

min{M ≥ 0; λ(t ∈ R : 1Q(t) > 1)} = 0,

which means
ess sup

R
f = ess inf

R
f = 0 ̸= sup

R
f = 1.

Example 2.3.13 . Consider now the following function:

f(t) =

{
tet

2
t ∈ Q

sin(t) t ∈ QC;

we have:

ess sup
R

f = 1, ess inf
R

f = −1, sup
R

f = +∞, inf
R

f = −∞.

Extension of the continuity Now we can discuss how also continuity can
be defined almost everywhere:
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Definition 2.3.14
Let (Ω,L(Ω), λ) be a complete measure space where Ω ⊂ RN is an
open set, and (X, τ) be a topological space.
A function f : (Ω,M, µ) → (X, τ) is continuous almost everywhere
in Ω if both

there exists Ω0 ⊂ Ω such that µ(ΩC
0 ) = 0

and
f−1(A) ∩ Ω0 is open for all open set A ⊂ X.

Equivalently a function is continuous a.e. if the measure of its discontinuity
points is zero.

Observe that if a function is continuous a.e. then it’s Lebesgue measurable
a.e..

Proposition 2.3.15
Consider two continuous functions f, g : R→ R.
If they coincide a.e. namely

f = g a.e. with respect to λ,

then they coincide at any point, namely:

f(t) = g(t) for any t ∈ R.

Proof. By contradiction, if there exists x0 ∈ R such that f(x0) ̸= g(x0)
then by continuity there exists also a δ such that f(x) ̸= g(x) for all x ∈
(x0 − δ, x0 + δ).
But then λ((x0− δ, x0+ δ)) = 2δ > 0: so there exists an interval of positive
measure where the two functions are different, so we have a contradiction.

■

Example 2.3.16 . Consider again the Dirichlet function f(t) = 1Q(t); it is
nowhere continuous (it is not continuous a.e. in R).
However f = 0 a.e., so f is equal a.e. to a continuous function. This while
the Heaviside function H = 1[0,+∞) is continuous a.e. but it is not equal a.e.
to any continuous function. You can prove this. The same consideration
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can be done for the following:

f(x) :=

{
x
|x| x ̸= 0

0 x = 0
.

Example 2.3.17 . Consider also the function we seen right before:

f(t) =

{
tet

2
t ∈ Q

sin(t) t ∈ QC;

we see that it is not bounded but it is essentially bounded. It is continuous
in t = 0; think whether it is continuous elsewhere!

Example 2.3.18 . At last consider the function f : R → R⋆ defined in this
way:

f(t) :=


arctan(t) t ∈ QC

+∞ t ∈ Q ∪ [0,+∞)

−∞ t ∈ Q ∪ (−∞, 0];

this function is equal a.e. to a continuous function but it’s nowhere contin-
uous, it isn’t bounded while is essentially bounded.
Same result with

f(t) :=


sin(t) f ∈ R \Q
−∞ t ∈ Q−

+∞ t ∈ Q+.

Proposition 2.3.19
Consider a function f : (Ω,L(Ω), λ) → R, with Ω ⊂ RN .
As f is Lebesgue measurable, there exists a function g : Ω → R
which is Borel measurable and such that f = g a.e. in Ω.

Extension of convergence theorems The three convergence theorems,
which are the Beppo Levi’s or monotone convergence theorem (see theorem
2.2.5 on page 109), the Fatou’s lemma (2.2.8 on page 113) and the dominated
convergence theorem (2.3.2 on page 119), can be trivially reformulated for
measurable a.e. functions.

In addiction we can prove another theorem for convergence of series of
function:
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Theorem 2.3.20
Consider a sequence of functions {fn}n∈N ⊂ L1(Ω,M, µ) ∀n ∈
N such that the series

∑
n∈N fn(t) converges point-wise ∀t ∈ Ω,

namely: ∑
n∈N

∫
Ω
|fn| dµ < +∞.

Then
∑

n∈N fn converges a.e in Ω to a function f ∈ L1(Ω,M, µ)
and we have:∫

Ω
f dµ =

∫
Ω

∑
n∈N

fn dµ =
∑
n∈N

∫
Ω
fn dµ.

Proof. The series
∑

n∈N |fn| converges to a non-negative function g and, by
Beppo Levi’s theorem:

∫
Ω

(∑
n∈N

|fn|

)
dµ =

∑
n∈N

∫
Ω
|fn|dµ < +∞.

Then we say that
∑

n∈N |fn| converges a.e. in Ω to g ∈ L1(Ω,M, µ); we
have that

∑
n∈N fn absolutely converges to some f a.e. in Ω, and moreover:∣∣∣∣∣

N∑
n=0

fn(t)

∣∣∣∣∣ ≤
N∑

n=0

|fn(t)| ≤
+∞∑
n=0

|fn(t)| = g(t)

for almost any t ∈ Ω and for all N .

Thus we can apply dominated convergence to
∑N

n=0 fn(t) → f(t).
We have that f ∈ L1(Ω,M, µ), and:

∫
Ω
f dµ = lim

N→∞

∫
Ω

N∑
n=0

fn(t) dµ = lim
N→∞

N∑
n=0

∫
Ω
fn dµ =

∑
n∈N

∫
Ω
fn dµ.

■

Notice that if
∫
Ω

∑
n∈N |fn|dµ < +∞ then

∑
n∈N |fn| is finite a.e. in Ω and∑

fn converges a.e. in Ω.
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Further results Here we introduce some other results that can be proven
at this state of the theory. First we talk about a useful inequality widely
used in probability.

Proposition 2.3.21 (Chebyshev’s inequality)
Let f ∈ L1(Ω,M, µ) such that f ≥ 0 a.e. in Ω, c > 0.
Then the following inequality holds:

µ({t ∈ Ω : f(t) ≥ c}) ≤ 1

c

∫
Ω
f dµ.

This inequality is trivial if we think to its geometrical meaning.

0

f(t)

c
c · µ({t ∈ Ω : f(t) ≥ c})

t

Proof. Consider the following chain of inequalities:∫
Ω
f dµ ≥

∫
{t∈Ω: f(t)≥c}

f dµ ≥ c · µ({t ∈ Ω : f(t) ≥ c}).

■

Here another useful tool:

Proposition 2.3.22
Let (Ω,M, µ) be a σ-finite measure space.
Consider two measurable functions f, g : Ω → [0,+∞] such that:∫

E
f dµ ≤

∫
E
g dµ for all E ∈ M,

then f ≤ g almost everywhere in Ω.

Lastly we present a simple yet useful result:
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Theorem 2.3.23 (Vanishing lemma)
Let f ∈ L1(Ω,M, µ) such that f ≥ 0 a.e. in Ω.

If
∫
Ω
f dµ = 0 then f = 0 a.e. in Ω.

Proof. Take the following set for each n ∈ N0:

En = {t ∈ Ω : f(t) ≥ 1

n
} ∈ M.

Then:

0 =

∫
Ω
f dµ ≥

∫
En

f dµ ≥ 1

n
µ(En) ∀n ∈ N0.

Thus µ(En) = 0 for all n ∈ N0.

Now suppose there exists t ∈ Ω such that f(t) > 0.
Then it exists n0 ∈ N such that f(t) ≥ 1

n0
, and so

t ∈ En0 ⊂ E where E =
⋃

n∈N0

En.

Thus {t ∈ Ω : f(t) > 0} ⊆ E, so:

µ(E) ≤
∑
n∈N

µ(En) = 0.

■

A brief final remark: consider L1(Ω,M, µ) and define d(f, g) :=
∫
Ω |f, g|dµ.

Notice that such function is not a metric: indeed, by the vanishing lemma,
d(f, g) = 0 =⇒ f = g not everywhere, but almost everywhere ∈ Ω.
To solve the problem, we consider the following equivalence relation:

f ∼ g ⇐⇒ f = g a.e. in Ω

Take the quotient set X1 :=
L1(Ω,M,µ)

∼ . Then d is a metric in X1.
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2.3.4 Derivative of a measure: properties

Now we are ready to proceed in theory development about derivatives. With
the definition of almost everywhere we can talk about uniqueness and some
properties.

Proposition 2.3.24
If the hypothesis of the Radon–Nikodym theorem (2.2.14 on page 117)
hold, then the Radon–Nikodym derivative is unique almost every-
where.

The reader can easily prove this result using proposition 2.3.22 on page 128.
Do it now before see the following proof!

Proof. Consider two Radon–Nikodym derivatives for dν
dµ : two positive and

measurable function ϕ1 and ϕ2.
Then we have: ∫

E
ϕ1dµ =

∫
E
ϕ2dµ for all E ∈ M.

From the previously referenced proposition we have both ϕ1 ≥ ϕ2 and
ϕ2 ≥ ϕ1 a.e. in Ω, hence the thesis. ■

Moreover, it holds the following.

Proposition 2.3.25
If the Radon–Nikodym derivative ϕ exists and µ(Ω) < +∞, then
ϕ ∈ L1(Ω,M, µ).

Basic properties Here we present some properties of the Radon–Nikodym
derivative.

Proposition 2.3.26 (Change of measure)
For any measurable positive function f : Ω → [0,∞] we have:∫

Ω
f dν =

∫
Ω
f
dν

dµ
dµ.

Proposition 2.3.27 (Linearity of the derivative)
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For all c1, c2 ≥ 0 we have:

d(c1ν1 + c2ν2)

dν
= c1

dν1
dµ

+ c2
dν2
dµ

.

Proposition 2.3.28 (Chain rule)
Consider three measures λ, ν and µ such that λ ≪ ν ≪ µ.
Then we have:

dλ

dµ
=

dλ

dν

dν

dµ
.

Proof. For every E ∈ M observe that:

λ(E) =

∫
E

dλ

dν
dν =

∫
E

dλ

dν

dν

dµ
dµ;

moreover, as λ ≪ µ, we have that:

λ(E) =

∫
E

dλ

dµ
dµ,

and then, on account of 2.3.22 on page 128:

dλ

dµ
=

dλ

dν

dν

dµ
a.e..

■

Proposition 2.3.29 (Inverse derivative)
If ν ≪ µ and µ ≪ ν then we have:

dν

dµ
=

(
dµ

dν

)−1

.

Proof. For every E ∈ M we have that:

µ(E) =

∫
E
dµ =

∫
E

dµ

dν
dν =

∫
E

dµ

dν

dν

dµ
dµ

thus, always on account of 2.3.22 on page 128:

1 =
dµ

dν

dν

dµ
a.e..

■

131



2.3.5 Metric spaces and convergences

In this part we will see how the tools we developed can be deployed in
practice. First we extend the notion of Lebesgue integrability by using the
concept of almost everywhere. The we see how handle different kind of
limits of series of functions.

The space L1 As we discovered that many properties can be useful even
when they holds almost everywhere, now we can find a space wider than L1

but whose functions has the same properties.

Definition 2.3.30
Consider the space L1(Ω,M, µ) and define on it the following equiv-
alence relation:

f ∼ g if f = g a.e. in Ω;

we define the space L1 by the quotient set:

L1(Ω,M, µ) =
L1(Ω,M, µ)

∼
.

In plain language, this set contains all the functions which are equal almost
everywhere to a function in L1. For the definition of quotient set see 1.1.20
on page 21.

Such set is a vector space on R with respect to the canonical operations
sum [f ] + [g] = [f + g] and homogeneity [cf ] = c[f ], c ∈ R.
It is also a metric space with respect to the following distance:

d1 :=

∫
Ω
|f − g|dµ for all [f ], [g] ∈ L1(Ω,M, µ),

and is proved that L1 with d1 is a complete metric space.
However, L1 isn’t a metric space with respect to the distance d1 as d1(f, g) =
0 implies only that f = g a.e. in Ω.

As L1 is a metric space we can develop a proper notion of convergence on
it.

Convergence of series of functions There are four notions of convergence
in a measure space: we will introduce the definition and we analyze the
relations between them.
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Definition 2.3.31
Let (Ω,M, µ) be a complete measure space, and {fn}n∈N be a se-
quence of measurable functions such that fn : Ω → R:

• we say that fn(t) converges point-wise almost everywhere to
f(t) as n → ∞, and we write “f(t)n

a.e.−−→ f(t)”, if we have:

µ({t ∈ Ω : lim
n→+∞

fn(t) ̸= f(t)}) = 0;

• we say that fn(t) converges uniformly almost everywhere to
f(t) as n → ∞, and we write “f(t)n

u.a.e.−−−→ f(t)”, if we have:

lim
n→+∞

ess sup
Ω

|fn − f | = 0;

• we say that fn(t) converges in mean to f(t) as n → ∞, and we

write “f(t)n
L1

−→ f(t)”, if {fn}n∈N ⊂ L1(Ω,M, µ) and:

lim
n→+∞

∫
Ω
|fn − f | dµ = 0;

• we say that fn(t) converges in measure to f(t) as n → ∞, and
we write “f(t)n

µ−→ f(t)”, if we have:

∀ε > 0 lim
n→+∞

µ({t ∈ Ω : |fn(t)− f(t)| > ε}) = 0.

To memorize those definition notice that there are some elements that are
common; the following observations can help to understand and memo-
rize:

• the limn→∞ occurs in all definitions;

• all definitions states that some quantity is equal to zero;

• all definitions involves the set Ω;

• all definitions involves the measure µ, the first and the second through
a measure of a set, the third through the integral, and the second
through the ess sup, which is defined in accordance to a measure.

• all definitions involves fn − f , which, in different ways, tends to zero.
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Also the first contains this subtraction implicitly;

• notice that the third definition requires also that the functions are
integrable a.e.;

• the first definition consist of a measure of the set in which a limit does
not occur, viceversa the third is the limit of the measure of a set.

It’s clear that this definitions are not fully equivalent each other, but they
are somehow correlated. Here we try to investigate their relations by declar-
ing and proving some propositions.

Some observation before starting the comparisons. Notice that the main
vantage of uniform convergence over point-wise is that with uniform con-
vergence we have not any dependence form the points of the domain t.
Notice that the integral in the mean convergence contains the distance d1
(the module): that is a metric convergence.
The convergence in measure is widely used in probability.

Uniform a.e. convergence implies point-wise a.e. convergence This re-
sult is stated in the following proposition:

Proposition 2.3.32
If a series of function converges uniformly almost everywhere, then
such series also converges point-wise almost everywhere.

The proof is very easy. Do it!

Point-wise a.e. convergence does NOT imply uniform a.e. convergence
Consider the following series of functions:

fn(t) =


nt if 0 ≤ t ≤ 1

n

2− nt if 1
n ≤ t ≤ 2

n

0 if 2
n ≤ t ≤ 1
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0 1
n

1 t2
n

1 fn(t)

ε

In this case fn(t) → 0 for all t ∈ [0, 1], and thus fn
a.e.−−→ 0.

However, ess sup |fn| = 1 and so it does not converge to 0, so fn
u.a.e.

f =
0.

Notice that to obtain also uniformly convergence we should consider the
interval [ε, 1], with ε > 0.
In general this little trick hols, indeed we have:

Proposition 2.3.33 (Severini–Egorov)
If µ(Ω) < +∞ and fn

a.e.−−→ f , thena

for all ε > 0 there exists E ⊂ M

such that
µ(EC) < ε and fn

u.a.e.−−−→ f in E.

aFor further discussion, see: R. L. Wheeden, A. Zygmund, Measure and Integral:
An Introduction to Real Analysis (2015), page 245, theorem 10.14.

This theorem provide us a condition for which point-wise a.e. convergence
implies uniform a.e. convergence, restoring the inverse implication.

If µ(Ω) = +∞, the theorem might not hold, as shown in the following
counterexample. On (R,L(R), λ) take:

fn(t) =

{
1 if t ∈ [n, n+ 1]

0 elsewhere.
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0 t

1

fn(t)

n n+ 1

See that fn
a.e.−−→ 0. However, there exist ε > 0 and E ⊂ R such that

λ(E) < ε and:
sup
R\E

|fn| = 1 ̸→ 0 as n → +∞.

Point-wise a.e. convergence does NOT imply convergence in mean
Consider the following counterexample.

Take Ω = [0, 1] and:

fn(t) =

{
n2 if 0 ≤ t < 1

n

0 if 1
n ≤ t ≤ 1.

Then fn converges a.e. to 0, but
∫ 1
0 fn dλ = n and its limit is +∞, thus fn

does not converges in mean to 0.

Also this implication can be restored if we add more strict hypotheses. If a
series of functions respects the requirements of the dominated convergence
theorem (see 2.3.2 on page 119) then, if the series converges point-wisely
a.e. we have that it converges in mean as well.

Uniform a.e. convergence does NOT imply convergence in mean This
can be deduced from the previous results, otherwise it would be a contra-
diction.

For a counterexample consider the series function fn = 1
n1(0,n)(t), with

n ∈ N0.
Then fn converges a.e. to 0, but

∫ +∞
0 fn dλ = 1 for all n ∈ N0. Since

uniform a.e. convergence implies point-wise a.e. convergence and, with the
hypothesis of dominated convergence, it implies the convergence in mean,
this convergence can be restored if the hypothesis of that theorem are ful-
filled.
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Convergence in mean does NOT imply point-wise a.e. convergence In
this case, consider the counterexample of the typewriter sequence.

Take Ω = [0, 1] and µ = λ, the Lebesgue’s measure. For k ∈ N consider
m ∈ {0, 1, 2, . . . , 2k − 1}, calculate n = 2k +m and define:

En =

[
m

2k
,
m+ 1

2k

]
.

We have, for each k, a partition of [0, 1], where En fill the interval from left
to right as a typewriter moves each line down and from left to right in each
line. For instance we have the following sets:

k = 0 m ∈ {0} n = 1 E1 = [0, 1]

k = 1 m ∈ {0, 1} n = 2 E2 =

[
0,

1

2

]
n = 3 E3 =

[
1

2
, 1

]
k = 2 m ∈ {0, 1, 2, 3} n = 4 E4 =

[
0,

1

4

]
n = 5 E5 =

[
1

4
,
1

2

]
n = 6 E6 =

[
1

2
,
3

4

]
n = 7 E7 =

[
3

4
, 1

]
k = 3 m ∈ {0, 1, 2, 3, 4, 5, 6, 7} n = 8 E8 =

[
0,

1

8

]

· · ·

Take fn = 1En , as in figure 2.4 on the following page.

Then ∫ 1

0
1En dλ =

1

2k
=

1

n−m
→ 0 as n → +∞

and thus fn converges in mean to 0.
However, limn→∞ 1En(t) does not exist for any t ∈ [0, 1], and thus fn does
not converge point-wise to any function.
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Figure 2.4: The typewriter sequence.
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We have the following proposition, as we can restore the implication for
only a subsequence.

Proposition 2.3.34

If fn
L1

−→ f , then there exists a sub-sequence {fnh
} such that fnh

a.e.−−→
f .

This is a trivial corollary of the proposition 2.3.37 on page 141 that we will
see.

Convergence in mean does NOT imply uniform a.e. convergence Oth-
erwise we would have a contradiction. To restore the convergence, some
additional hypothesis are required.

Convergence in measure does NOT imply point-wise a.e. convergence
The counterexample of the typewriter sequence fits again. We know that
1En does not converge point-wisely to any f , but it is easy to check that
1En

µ−→ 0. Indeed:

λ({t ∈ [0, 1] : 1En(t) > δ} <
1

2k
∀δ > 0.

Nonetheless, the following result holds.

Proposition 2.3.35
If fn

µ−→ f , then there exists a sub-sequence {fnh
} such that fnh

a.e.−−→
f .

Proof. Let δn > 0 such that δn → 0, and εn > 0 be such that
∑

n∈N εn <
+∞.
Consider a sub-sequence {nh}, with nh > nh−1, such that:

Eh = {t ∈ Ω : |fnh
(t)− f(t)| > δnh

} and µ(Eh) < εnh
.

Set E =
⋂

h∈NEh.
Since µ(Eh) ≤

∑
h∈N εnh

< +∞ and {Eh} is monotone decreasing, we have
that µ(Eh) ↓ µ(E).
Moreover, µ(Eh) ≤

∑∞
j=n εnj → 0 as h → ∞, and thus µ(E) = 0.

Take now t ∈ EC. Then ∃ k ∈ N such that t /∈ Ek, that is, |fnk
(t)− f(t)| ≤

δnk
.

Thus fnh
(t) → f(t) ∀h ≥ k ∀t ∈ EC. ■

139



Point-wise a.e. convergence does NOT imply convergence in measure
Nevertheless, we have the following result.

Proposition 2.3.36
If a series of function converges point-wisely almost everywhere,
then such series also converges in measure if µ(Ω) < +∞.

Proof. Let E ∈ M such that µ(E) = 0 and:

fn(t) ̸→ f(t) if t ∈ E, fn(t) → f(t) if t ∈ EC.

Fix δ > 0 and consider:

Ak(δ) = {t ∈ R : |fk(t)−f(t)| > δ}, Bn(δ) =
∞⋃
k=n

Ak(δ), C(δ) =
⋂
n∈N

Bn(δ).

See that Bn is decreasing, namely B1 ⊃ B2 ⊃ · · · ⊃ Bn, and µ(B1) < +∞.
Then µ(Bn(δ)) → µ(C(δ)).

Notice that C(δ) ⊂ E. Indeed:

t ∈ C(δ) =⇒ f ∈ Bn(δ) ∀n ∈ N
=⇒ ∀n ∃ k ≥ n : t ∈ Ak

=⇒ ∀n ∃ k ≥ n : |fk(t)− f(t)| > δ

=⇒ fn(t) ̸→ f(t) =⇒ t ∈ E

Then µ(C(δ)) = 0, and thus µ(Bn(δ)) → 0.
However An(δ) ⊂ Bn(δ), thus also µ(An(δ)) → 0 as n → ∞, that is fn

µ−→
f . ■

If the hypothesis is not satisfied the thesis is not guaranteed, indeed consider
for example that µ(Ω) = +∞ and set:

fn(t) =

{
1 if t ≥ n

0 if t < n
∀n ∈ N.

Then fn
a.e.−−→ 0, but λ({t ∈ R : fn(t) > 1

2}) = +∞ ∀n ∈ N, and thus
fn

λ
0. Notice that if {fn} would converge in measure then it would

necessarily converge to 0.

140



Convergence in mean implies convergence in measure For this last case,
the following result holds.

Proposition 2.3.37
If a series of function converges in mean, then such series also con-
verges in measure.

Proof. Fix δ > 0, and set E(δ) := {t ∈ Ω : |fn(t)− f(t)| > δ}. We want to
prove that µ(δ) → 0 as n → +∞. We have, by monotonicity:∫

Ω
|fn − f | dµ ≥

∫
E(δ)

|fn − f | dµ ≥ δµ(E).

Since
∫
Ω |fn − f | dµ → 0 as n → +∞, then also δµ(E) → 0. ■

But the inverse is not true, as shown here.

Convergence in measure does NOT imply convergence in mean indeed,
consider the measure space (R,L(R), λ) and take fn(t) := n1[0, 1n ]

(t).

Then λ({t ∈ R : fn(t) > δ}) ≤ 1
n → 0 as n → ∞, and thus fn

µ−→ 0.
However

∫ 1
0 fn(t) dλ = 1 as n → ∞, and thus fn

µ
0.

Summary of the relations between kinds of convergence we stated the
following relations between convergences:

1. uniform a.e. convergence implies point-wise a.e. convergence, see
theorem 2.3.32 on page 134, whose proof is left to the reader;

2. point-wise a.e. convergence does NOT imply uniform a.e. conver-
gence, as shown with a counterexample, but the implication can be
restored as specified in Severini–Egorov theorem (2.3.33 on page 135);

3. point-wise a.e. convergence does NOT imply convergence in mean,
as shown with a counterexample, but the implication can be restored if
the hypothesis of dominated convergence theorem (2.3.2 on page 119)
are fulfilled;

4. uniform a.e. convergence does NOT imply convergence in mean, as
shown with a counterexample, but the implication can be restored if
the hypothesis of dominated convergence theorem (2.3.2 on page 119)
are fulfilled;
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5. convergence in mean does NOT imply point-wise a.e. convergence,
as shown with the typewriter counterexample, but the implication can
be restored for a sub-sequence, see proposition 2.3.35 on page 139;

6. convergence in mean does NOT imply uniform a.e. convergence
otherwise we would have a contradiction, but the implication can be
restored with the tools introduced for the previous cases;

7. convergence in measure does NOT imply point-wise a.e. conver-
gence, as shown with the typewriter counterexample, but the impli-
cation can be restored for a sub-sequence, see proposition 2.3.34 on
page 139;

8. point-wise a.e. convergence does NOT imply convergence in mea-
sure, unless the domain has finite measure, see proposition 2.3.36 on
page 140;

9. convergence in mean implies convergence in measure, see theorem
2.3.37 on the previous page;

10. convergence in measure does NOT imply convergence in mean, as
shown with a counterexample.

a.e. u.a.e.

mean measure

µ(ω) <
∞

µ(ω) < ∞

Figure 2.5: Summary of the implication of convergences. Solid: implied
(potentially under some condition specified along the line); dashed: not
implied.

To conclude our discussion we present the following result about conver-
gence in measure.

Proposition 2.3.38
If fn

µ−→ f and fn
µ−→ g, then f = g a.e.
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The space L1 belongs to the family of functional space called “Lp spaces”.
In particular the distance d∞(f, g) = ess sup |f − g| is a metric related to
the space L∞, as (L∞, d∞) is a metric space. A wider discussion occurs in
section 3.1.4 on page 191.

Metric convergence Some convergence can be induced by a metric, in
such case they are said to be metric convergences.
The uniform a.e. convergence is induced by the d∞ metric; indeed, we
have:

d∞(fn, f) → 0 ⇐⇒ fn
u.a.e.−−−→ f.

The convergence in mean is a metric convergence too, as it is inducted by
d1:

d1(fn, f) → 0 ⇐⇒ fn
L1

−→ f.

The point-wise a.e. convergence is not induced by any metric, so it is not
a metric convergence. Some exceptions could occur, in particular when the
measure µ is positive only on a countable set.

The case of measure convergence is a bit more complicated. We have to
operate on a proper space and define a proper metric.
Consider the measure space (Ω,M, µ) where µ is finite, and the following
space:

F := {f : Ω → R measurable};

then consider related quotient space U := F
∼ defined with the following

equivalence relation:
f ∼ g ⇐⇒ f = g a.e.,

that includes all the functions which are equal a.e. to a measurable one.
Now define the following distance:

dµ(f, g) :=

∫
Ω

|f − g|
1 + |f − g|

dµ.

This is a metric in U and (U , dµ) is a complete metric space.
The measure convergence is a metric convergence with the distance dµ,
namely:

dµ(fn, f) → 0 ⇐⇒ fn
µ−→ f as n → +∞.
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2.4 Fundamental theorems of calculus

This chapters contains the most important results of the real analysis; here
we focus on calculus of one-valued functions, then, in the next chapter,
we will consider also multi-valued functions. Some of those results are well-
known also in lower calculus courses, but here we will approach the problem
from a more technical point of view.

2.4.1 First fundamental theorem of calculus

We try to define a generic goal. Consider the measure space ([a, b],L([a, b]), λ),
take f ∈ L1([a, b],L([a, b]), λ) and set

F (x) =

∫ x

a
f(t)dλ,

which properties does F have?

Lebesgue points First, our focus is on discontinuity points. The first step
is to define a new notion for “continuous points”; on those we are confident
that there are no issues with integration and differentiation.

Definition 2.4.1
A point x ∈ [a, b] is a Lebesgue point for a function f if there exists
a representative f̃ of f (f̃ = f a.e.) such that:

lim
h→0

1

h

∫ x+h

x
|f̃(t)− f̃(x)| dt = 0,

where h → 0+ if x = a or h → 0− if x = b.

The integral uses the λ measure, the integral variable t has been written in
dt for clarity.

Notice that f̃ is a representative of the equivalence class [f ], given by almost-
everywhere equality; it’s typical of L1 spaces.

Lebesgue points do not present discontinuity and are a sort of “continuous
points”; for instance, jump points are not a Lebesgue point; check it by
considering:

f(t) =

{
t
|t| if t ∈ [−1, 1] \ {0}
0 if t = 0.
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Having checked that jumps are not Lebesgue points, one can wonder if a
continuity point is a Lebesgue point. We have the following result.

Theorem 2.4.2
If x0 is a continuity point for f , then x0 is a Lebesgue point for f .

Proof. By definition of continuity:

∀ε > 0 ∃ δ : |x− x0| < δ =⇒ |f(x)− f(x0)| < ε,

we evaluate the quantity:∣∣∣∣1h
∫ x0+h

x0

|f(x)− f(x0)|dt
∣∣∣∣ ≤ 1

|h|
ε|λ(x0 + h− x0)| =

|h|
|h|

ε = ε, ∀ε > 0.

■

Theorem 2.4.3
Let f ∈ L1([a, b],L([a, b]), λ).
Then almost any point x ∈ [a, b] is a Lebesgue point of f . 21

The theorem We are able to state a first description of the relation be-
tween differentiation and integration.

Theorem 2.4.4 (First fundamental theorem of calculus)
Let f ∈ L1([a, b],L([a, b]), λ).
The integral function F (x) =

∫ x
a f(t) is differentiable a.e. and F ′ =

f a.e. in [a, b].

Proof. Let x ∈ [a, b] be a Lebesgue point of f and h ̸= 0 such that x+ h ∈
[a, b]. Notice that we can rewrite the value of a function in the point as
follow:

f(x) = lim
h→0

1

h

∫ x+h

x
f(t) dt.

Consider now the incremental quotient of the integral function F ; we need
it equal to function f . So we write:

F (x+ h)− F (x)

h
− f(x) =

1

h

∫ x+h

x
(f(t)− f(x)) dt,

21For further discussion and a proof, see: W. Rudin, Real and Complex Analysis, 1987,
page 138, theorem 7.6.
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then, by triangular inequality (see 2.3.3 on page 119), we have:∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ ≤ 1

|h|

∫ x+h

x
|f(t)− f(x)| dt.

Taking the limit for h → 0 or h → 0+, if x = a, or h → 0−, if x = b, we
have:

1

|h|

∫ x+h

x
|f(t)− f(x)|dt → 0.

We have proved the theorem for any Lebesgue point, through the previous
theorem (2.4.3 on the preceding page) we know that the set of non-Lebesgue
points has measure zero; so the thesis is proven. ■

But this theorem opens another question: is F continuous in [a, b]?

2.4.2 Absolute continuity

Which functions can be written as integral functions of their derivatives?
In order to answer this question we must first to analyze the properties of
F , and find a property that is stronger than simple continuity.

Definition 2.4.5
A function f : [a, b] → R is absolutely continuous (AC) in [a, b] if
for every ε > 0 it exists δ > 0 such that:

N∑
n=1

|f(bn)− f(an)| < ε,

for all N ∈ N, where the intervals {(an, bn)}Nn=1 are mutually disjoint
and such that:

N⋃
n=1

(an, bn) ⊆ [a, b] and
N∑

n=1

(bn − an) < δ.

The definition still holds if {(an, bn)}n∈N are countable. This notion is more
general then uniform continuity or continuity (1.2.42 on page 52 and 1.2.39
on page 51 respectively), indeed the following holds:
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Proposition 2.4.6
If f is absolutely continuous in [a, b], then it is also uniformly con-
tinuous in [a, b].

The converse is false in general, consider this function as a counterexam-
ple:

f(x) =

{
x sin 1

x if x ∈ [−1, 1] \ {0}
0 if x = 0.

We see that f is continuous in [a, b], and thus f is also uniformly continuous
(see theorem 1.2.88 on page 66).
However, f is not AC in [a, b] by the definition.

Lipschitz continuity There exists another property of continuity:

Definition 2.4.7
Let f : [a, b] ⊂ R → R. We say that f is Lipschitz continuous if
exists k > 0 such that:

|f(x)− f(y)| ≤ k|x− y| ∀x, y ∈ [a, b].

Observe that the derivative of any Lipschitz continuous function is bounded.

Proposition 2.4.8
If f is Lipschitz continuous in [a, b], then it is also absolutely con-
tinuous in [a, b].

Again, the converse implication is not guaranteed: consider [a, b] = [0, 1]
and f(x) =

√
x. While f is uniformly and absolutely continuous, it is not

Lipschitz continuous as sup[0,1] f
′(x) = +∞.

Summary of the continuity notions for functions complete
this with
all the
definitions
of conti-
nuity

• The usual (strong) definition of continuity, a function f : [a, b] → R is
continuous in x0 if ∀ε > 0,∃ δ > 0 : |x−x0| < δ =⇒ |f(x)−f(x0)| <
ε.

• Continuity almost everywhere, see 2.3.14 on page 125.

• Lipschitz continuity, see 2.4.7.

• Absolute continuity, see 2.4.5 on the facing page.
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Absolute continuity of the integral

Theorem 2.4.9
Let f ∈ L1(Ω,M, µ). Then:

∀ε > 0 ∃ δ > 0 :

∫
E
|f | dµ < ε ∀E ∈ M : µ(E) < δ.

Proof. Let ε > 0. Suppose f ≥ 0 for simplicity (otherwise is possible to use
the same proof for f− and f+).
There exists a sequence of simple functions {sn}n∈N bounded and mea-

surable, such that 0 ≤ sn ≤ f and sn
L1

−→ f(t) in Ω; so (see monotone
convergence 2.2.5 on page 109 or dominated convergence 2.3.2 on page 119)
there exists also a measurable and bounded function g such that∫

E
|f − g|dµ ≤ ε

2
.

Set M = ess supt∈Ω |g(t)| > 0 and δ = ε
2M . Then:∫

E
|f |dµ ≤

∫
E
|f−g|dµ+

∫
E
|g|dµ <

ε

2
+Mµ(E) <

ε

2
+Mδ =

ε

2
+M

ε

2M
= ε

with µ(E) < δ. ■

This corollary applies the previous theorem to the case of the integral func-
tion:

Corollary 2.4.10
Let f ∈ L1([a, b],L[a, b], λ), and set:

F (x) =

∫ x

a
f(t) dλ.

Then the integral function F is absolutely continuous in [a, b].

Proof. Fix ε > 0 and let δ > 0 given by the previous theorem 2.4.9.
Let also N ∈ N, and {(an, bn)}n=1:N ⊂ [a, b] be a collection of mutually
disjoint intervals such that

∑N
n=1(bn − an) < δ and E =

⋃N
n=1(an, bn) with
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λ(E) < δ.
Then we have:

N∑
n=1

|F (bn)−F (an)| =
N∑

n=1

∣∣∣∣∫ bn

an

f(t) dλ

∣∣∣∣ ≤ N∑
n=1

∫ bn

an

|f(t)|dλ =

∫
E
|f(t)| dλ < ε.

Thus, by the definition, F is absolutely continuous in [a, b]. ■

For example take f(t) = 1
2
√
t
∈ L1([0, 1],L([0, 1]), λ); then we have:∫ x

0

1

2
√
t
dλ =

√
x.

Thanks to the previous theorem we have that
√
x is absolutely continuous in

[0, 1]. However we already know that it is not Lipschitz-continuous.

The space of absolute continuous functions It is easy to see that the set
of the function which are absolute continuous on a closed interval is closed
with respect to sum and scalar product. Indeed, if f and g are absolutely
continuous in [a, b], then αf + βg is absolutely continuous too. So the
space

AC([a, b]) := {f : [a, b] → R : f AC in Ω},

is a vector space on R with respect to the canonical operations.

2.4.3 Second fundamental theorem and bounded variation functions

We know that if f ∈ L1([a, b],L[a, b], λ), then F (x) =
∫ x
0 f(t)dt is such that

F ∈ AC([a, b]) and F ′ = f a.e. in [a, b].

How can we find, given the functions F : [a, b] → R, a complete characteri-
zation22 of the following calculus formula?

F (x) = F (a) +

∫ x

a
F ′(t)dt ∀x ∈ [a, b]

These are some necessary conditions:

• F ′ ∈ L1([a, b],L[a, b], λ);
22A full characterization means a condition which is necessary and sufficient.
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• F ∈ AC([a, b]).

Now we try to figure out it those conditions can be also sufficient. But first
consider these two example.
Look at this function:

F (x) =

{
x2 sin( 1

x2 ) x ∈ [−1, 1] \ {0}
0 x = 0.

The function F is differentiable in [−1, 1] but F ′ /∈ L1([−1, 0]).

Consider:

F (x) =

{
−1 x ∈ [0, 1]

1 x ∈ [−1, 0)

It is differentiable in [1, 1] and F ′ = 0 ∈ L1([−1, 1]), but the calculus formula
doesn’t hold.

The characterization we are looking for is given by the following theorem:

Theorem 2.4.11 (Second fundamental theorem of calculus)
A function is absolutely continuous if and only if it is differentiable
a.e. in [a, b], its derivative belongs to L1 and for such function holds
the calculus formula. Namely:

F ∈ AC([a, b]) ⇐⇒


F is differentiable a.e. in [a,b];
F ′ ∈ L1([a, b],L[a, b], λ);
F (x) = F (a) +

∫ x
a F ′(x) dλ ∀x ∈ [a, b].

The sufficient condition ( =⇒ ) part is already proven.

Bounded variation functions To provide also a demonstration of the nec-
essary part we have to introduce a new class of function.

Definition 2.4.12
Given a function f : [a, b] ⊂ R → R, and x, y ∈ [a, b] such that
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x < y, the total variation of f in [x, y] is defined as follows:

Vy
x(f) := sup

{ti}

N∑
n=1

|f(tn)− f(tn−1)|,

where x < t0 < t1 < · · · < tN < y.

The function f is said to be a bounded variation function in [a, b]
if Vb

a(f) < +∞.

Notice that a function f is not a bounded variation function if and only if
there exists x ∈ (a, b] such that Vx

a(f) = +∞: intuitively, the total variation
quantifies jumps and oscillations of the function.

A sufficient condition for bounded variation is the monotonicity on an in-
terval. Indeed, Vb

a = f(b) − f(a) is non-decreasing or Vb
a = f(a) − f(b) is

non-increasing.

a b

Let us consider some properties.

Proposition 2.4.13
Let f be a bounded variation function in [a, b].23 Then:

Vb
a(f) = Vc

a(f) + Vb
c(f) ∀c ∈ [a, b].

Moreover the operator x 7→ Vx
a(f) is non decreasing, i.e.:

Vy
a(f)−Vx

a(f) = Vy
x(f) ≥ 0 ∀x, y : y > x.
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Observe that the total variation is absolute homogeneous:

∀c ∈ R Vy
x(cf) = |c|Vy

x(f).

The space of bounded variation functions and the relation with absolute
continuous ones It is easy to see that the set of the bounded variation
function on a closed interval is closed with respect to sum and scalar prod-
uct:

BV ([a, b]) := {G : [a, b] → R : Vb
a(G) < ∞}.

Indeed, if f and g are bounded variation in [a, b] and α ∈ R, then:

Vb
a(αf) = |α|Vb

a(f) and Vb
a(f + g) = Vb

a(f) + Vb
a(g).

Remember that this point was made also for absolute continuous functions:
the spaces of functions with these properties are vector spaces.
Also there is a strong relation between these two properties:

Proposition 2.4.14
If a function f is absolute continuous in [a, b] then it is also bounded
variation in [a, b] and x 7→ Vx

a(f) is absolute continuous in [a, b].24

Namely:

f ∈ AC([a, b]) =⇒

{
f ∈ BV ([a, b])

Vx
a(f) ∈ AC([a, b]).

Relations with monotonicity and continuity This new class of function
is related to many well-known properties.

In general, uniform continuity does not imply bounded variation; consider
the following example:

f(x) =

{
x cos 1

x x ∈ (0, 1]

0 x = 0.

23For further discussion, see: A. N. Kolmogorov, S. V. Fomin, Introductory Real Anal-
ysis, 1975, page 329, theorem 2.

24For further discussion, see: A. N. Kolmogorov, S. V. Fomin, Introductory Real Anal-
ysis, 1975, page 337, theorem 2.
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This function is uniformly continuous in [0, 1] (see Heine–Cantor’s theorem
1.2.88 on page 66), but it is not bounded variation in [0, 1]: prove it using
the definition on a suitable partition of such interval. Note also that the
length of the graph of f is not finite.

Remember that a sufficient condition for bounded variation is the mono-
tonicity on an interval. Moreover, we have the following proposition:

Proposition 2.4.15
Every bounded variation function can be written as a difference of
two non-decreasing functions.

Proof. Observe that f(x) = Vx
a(f)− [Vx

a(f)− f(x)].
Taking v(x) = Vx

a −f(x), by definition of total variation we have:

v(y)− v(x) = Vy
x(f)− (f(y)− f(x)) ≥ 0 with y > x

since the total variation can be equal to the jump between x and y (if f is
monotone) or greater25; and thus v(x) is non-decreasing. ■

Due to this fact we understand that every bounded variation function has at
most a countable set of jump discontinuities; so those function are Lebesgue-
integrable! Namely if f ∈ BV ([a, b]) then f ∈ L1([a, b]).

Theorem 2.4.16
Any monotone function in [a, b] has finite derivative a.e. in [a, b].26

Corollary 2.4.17
Any f ∈ BV ([a, b]) has finite derivative a.e. in [a, b]. Moreover
f ′ ∈ L1([a, b]).

Moreover we have:

Proposition 2.4.18
Let f : [a, b] → R be a non-decreasing function. Then its derivative

25Think, for instance, if it jumps in between.
26For further discussion, see: A. N. Kolmogorov, S. V. Fomin, Introductory Real Anal-

ysis, 1975, page 321, theorem 6.
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f ′ ∈ L1([a, b]) and we have:∫ b

a
f ′(t) dt ≤ f(b)− f(a).

Proof. Set:

Φn(t) = n

[
f

(
t+

1

n

)
− f(t)

]
with n ∈ N0. We extend f after b, considering f(t) = f(b) ∀t ∈ [b, b+ 1

n ].

As f ∈ L1([a, b]) also Φn ∈ L1([a, b]) ∀n ∈ N0; and f ′(t) = lim
n→∞

Φn(t) for
almost any t ∈ [a, b] (convergence almost everywhere).
Then we have:∫ b

a
Φn(t) dt = n

∫ b

a

[
f

(
t+

1

n

)
− f(t)

]
dt (τ := t+ 1

n)

= n

[∫ b+ 1
n

a+ 1
n

f(τ) dt−
∫ b

a
f(t) dt

]

= n

[∫ b+ 1
n

b
f(t) dt−

∫ a+ 1
n

a
f(t) dt

]
(monotonicity)

≤ nf(b)
1

n
− nf(a)

1

n
= f(b)− f(a).

We now apply Fatou’s lemma, and thus we have:∫ b

a
f ′(t) dt =

∫ b

a
lim
n→∞

Φn(t) dt

≤ lim inf
n→∞

∫ b

a
Φn(t) dt

≤
∫ b

a
Φn(t) dt

≤ f(b)− f(a).

Thus
∫ b
a f ′(t) ≤ f(b)− f(a) and f ′ ∈ L1([a, b]). ■
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Observe that the inequality can be strict. Indeed, take:

f(x) =

{
0 x ∈ [0, 12)

1 x ∈ [12 , 1];

in this case we get:
∫ 1
0 f ′(t)dt = 0 < 1 = f(1)− f(0).

The following last theorem provides a sort of generalization of the charac-
terization of the constant function.27

Theorem 2.4.19
Let G ∈ AC([a, b]) be non-decreasing and such that G′ = 0 a.e. in
[a, b].
Then G is constant in [a, b].

The proof of this result is very hard.

Proof of the second fundamental theorem Now we prove theorem 2.4.11
on page 150. The sufficient condition part is already proven. We need
to prove that if F ∈ AC([a, b]) then F is differentiable a.e. in [a, b], its
derivative F ′ ∈ L1([a, b]) and the calculus formula holds.

Proof. Necessary condition ⇐= :
Consider a function F ∈ AC([a, b]), we have that (see proposition 2.4.15 on
page 153 and 2.4.14 on page 152):

F = F1 − F2 = Vx
a(F )− [Vx

a(F )− F ];

where F1, f2 are AC([a, b]) and non-decreasing.

Thus we can suppose that F is non-decreasing without loss of generality,
and prove the theorem in the general case by linearity.
Then, thanks to Corollary 2.4.17 on page 153 we have that F is differentiable
a.e. in [a, b] and F ′ ∈ L1([a, b]).
Now it remains to prove the calculus formula.

Set:
Φ(x) = F (x)−

∫ x

a
F ′(t) dt ∀x ∈ [a, b],

27For further discussion see: A. N. Kolmogorov, S. V. Fomin, Introductory Real Anal-
ysis, page 339
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it is AC([a, b]). Moreover, since F is non-decreasing, thanks to 2.4.18 on
page 153 we have that for all x1, x2 ∈ [a, b] such that x1 ≤ x2:

Φ(x1)− Φ(x2) = F (x1)− F (x2)−
∫ x2

x1

F ′(t) dt ≥ 0,

so also Φ is non-decreasing.

Using the first fundamental theorem of calculus (2.4.4 on page 145), we have
that Φ′ = 0 a.e. in [a, b]. Then (2.4.19 on the previous page) Φ is constant
everywhere in [a, b], namely Φ(x) = c for any x ∈ [a, b]. Take x = a, then
F (a) = c, and thus:

F (x) = F (a) +

∫ x

a
F ′(t) dt.

■

Notice that the first theorem was proven with the Lebesgue’s point and it
was quite trivial. Now we stated that absolute continuity is necessary for
the calculus formula.

This is a complete characterization of AC functions: being L1 is not enough
for a function to be reconstructed.
This theorem is the largest generalization of the calculus formula currently
existing.

2.4.4 Further results

A general version of the change of variable With this new knowledge
we can improve our tools:

Theorem 2.4.20
Consider a function g : [a, b] → [c, d] ∈ AC([a, b]), such that it is
strictly monotone.
Then, for any f : [c, d] → ∞ ∈ L1([c, d]) then:∫ d

c
f(t) dt =

∫ b

a
f(g(τ))|g′(τ) dt =

∫ b

a
f(g(τ)) dµ

where dµ
dτ = |g′|, the Radon–Nikodym derivative.
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Notice that the fact that the composition of function is still Lebesgue-
integrable is a part of the theorem: the compound function(f ◦ g)|g′| is
measurable and integrable as a consequence of the assumptions, indeed we
have:

f ∈ L1([c, d]) ⇐⇒ (f ◦ g)|g′| ∈ L1([a, b]).

The theorem also holds for f just measurable and non-negative. In this case,
f is integrable in [c, d] if and only if (f ◦G) |G′| is integrable in [a, b].

A sufficient condition for absolute continuity The following result holds28:

Theorem 2.4.21
Let f : [a, b] ∈ R→ R. If f is differentiable everywhere in [a, b] and
f ′ ∈ L1([a, b]), then f ∈ AC([a, b]).

Consider for example the following function:

f(x) =

{
x

3
2 sin 1

x if x ∈ (0, 1]

0 if x = 0.

Its derivative exists everywhere:

f ′(x) =

{
3
2

√
x sin 1

x − 1√
x
cos 1

x if x ∈ (0, 1]

0 if x = 0;

In 0 we computed separately: f(h)−f(0)
h =

h
3
2 sin 1

h
h → 0 for h → 0+.

So f ′ is not continuous, but it is integrable in ([0, 1]), and thus f ∈ AC([0, 1]).
Observer also that f is not lipschitz continuous.

What if we have that f is continuous, f ′ exists a.e., and f ′ is integrable
in [a, b]? In this case f might not be AC([a, b]): consider for example the
Vitali–Cantor function (see definition 1.2.100 on page 73).

Comparison between Lebesgue and Riemann integral There are plenty
of definitions for integrals: now we make a comparison between the two
integral that we already know. Consider, in this paragraph, the space
(R,L(R), λ).

28For further discussion, see: W. Rudin, Real and Complex Analysis, 1987, page 149,
theorem 7.21.
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Theorem 2.4.22
Let f : (a, b) ⊂ R→ R bounded.
Then f is Riemann-integrable in (a, b) if and only if f is continuous
a.e. in (a, b).

29

Notice for example that 1Q∩(a,b) is not Riemann integrable, because it
is nowhere continuous. But 1Q∩(a,b) = 0 a.e. in (a, b), it is Lebesgue-
integrable, and

∫ b
a 1Q∩(a,b)dλ = 0.

More in general, if f : (a, b) → R is Lebesgue-measurable and bounded,
then f is Lebesgue integrable: indeed, f is measurable.

Theorem 2.4.23
Let f : (a, b) ⊂ R → R be bounded and continuous a.e. in (a, b).
Then the Riemann integral and the Lebesgue integral coincide,30

namely: ∫ b

a
f(t) dt︸ ︷︷ ︸

Riemann

=

∫ b

a
f(t) dλ︸ ︷︷ ︸

Lebesgue

.

Consider for example the generalized Cantor set Tε of Lebesgue measure
3 1−ε
3−2ε . Then 1Tε is bounded but it is not Riemann integrable since it’s

discontinuities at each point. Indeed, the interior of Tε is empty and 1Tε

has no limit as x → x0 for any x0 ∈ Tε. Moreover 1Tε is Lebesgue integrable
in [0, 1] but it is not equal almost everywhere to any Riemann integrable
function.

Let us now focus on improper Riemann integrals:

Theorem 2.4.24
Let f : (a, b) ⊆ R→ R, with a, b ∈ R⋆ : a < b.
If f is Riemann integrable in (a, b) in the improper sense and it
changes its sign at most a finite number of times, then f is Lebesgue

29For further discussion, see: W. P. Ziemer, Modern Real Analysis, 2017, page 153,
theorem 6.19.

30For the proof, see: A. N. Kolmogorov, S. V. Fomin, Introductory Real Analysis,
1975, pages 309-310, theorem 4.
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integrable in (a, b) and the two integrals coincide.

If f changes sign an infinite number of times then the Riemann improper
integral can exists but f might not be Lebesgue measurable. Consider the
following function:

f(t) =
sin t

t
t ∈ (0,+∞).

Then f is Riemann-integrable as lim
a→+∞

∫ a
0 f(t) dt exists. However, it is not

integrable, indeed: ∫ +∞

0

∣∣∣∣sin tt
∣∣∣∣ dλ =

∫ +∞

0

1

t
dλ = +∞.

Proof. Suppose f > 0. We can find two sequences, {an}n∈N and {bn}n∈N,
such that an < bn, an ↓ a, bn ↑ b, and (a, b) =

⋃
n∈N(an, bn). Suppose f is

bounded on (an, bn) ∀n ∈ N.
Therefore f is Riemann integrable on each (an, bn) and we have:∫ bn

an

f(t) dt︸ ︷︷ ︸
Riemann

=

∫ bn

an

f(t) dλ︸ ︷︷ ︸
Lebesgue

∀n ∈ N.

Set Fn =
⋃n

j=0(aj , bj) and fn = f1Fn . Then fn ↑ f and, using monotone
convergence, we have:

lim
n→∞

∫ b

a
fn(t) dλ = lim

n→∞

∫ bn

an

f(t) dλ =

∫ b

a
f(t) dλ.

By definition of Riemann improper integral, we have:∫ b

a
f(t) dt = lim

n→∞

∫ bn

an

f(t) dt.

Putting all together, we get the thesis:

lim
n→∞

∫ b

a
fn(t) dλ = lim

n→∞

∫ bn

an

f(t) dt.

■
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Consider now some examples: the function

f(t) =


sin(t) if t ∈ R \ Z
+∞ if t ∈ Z+

−∞ if t ∈ Z−

is essentially bounded and continuous a.e. in R, and f(t) = sin(t) a.e. in
R.

The function

f(t) =

{
sin(t) if t ∈ [0, 1] ∩ (R \Q)
+∞ if t ∈ [0, 1] ∩Q

is nowhere continuous, bounded, and measurable. Then that f is Lebesgue
integrable, hence

∫ 1
0 f(t) dλ exists finite.

Indeed, f(t) = sin(t) a.e. in [0, 1], thus:∫ 1

0
f(t)dλ =

∫ 1

0
sin tdλ︸ ︷︷ ︸

Lebesgue

=

∫ 1

0
sin tdt︸ ︷︷ ︸

Riemann

.

Lebesgue decomposition of bounded variation functions Any bounded
variation function can be written as a sum of three proper function. Let’s
understand what kind of function they are.

Definition 2.4.25
Let {xn}n∈N and {x′n}n∈N be two sequences of points in [a, b].
Let also {hn}n∈N, {h′n}n∈N ⊂ R such that:∑

n∈N
|hn| < +∞,

∑
n∈N

|h′n| < +∞.

A function f is called jump function if it can be written as:

f(x) =
∑
n∈N:
xn<x

hn +
∑
n∈N:
x′
n≤x

h′n.

Notice that the first sum generates a function continuous from the left, the
other one from the right.

160



Jump functions are step function if the sequences {xn} and {x′n} are strictly
increasing, but jump functions can be more general.

There is another more explanatory form for writing a jump function f :
[a, b] → R where f(a) = 0. In such case we would have:

f(x) =
∑
n∈N

gn(x) +
∑
n∈N

g′n(x),

where:

gn(x) =

{
0 a ≤ x ≤ xn

hn xn < x ≤ b
g′n(x) =

{
0 a ≤ x < x′n
h′n xn ≤ x ≤ b.

We can provide some example of jump functions. For instance we can define
a jump function on [0, 1] by setting xn = 1

n and hn = (−1)n

n
3
2

with n ∈ N0. In

that case we have f( 1
100) =

∑+∞
n=101

(−1)n

n
3
2

or f( 1√
71
) =

∑+∞
n=8

(−1)n

n
3
2

.

Here an example of a jump function which is not a step function; let {xn}x∈N
be an enumeration of Q, and set hn = 1

2n . Thus our function is:

f(x) =
∑
xn<x

1

2n
.

It can be proven that f is discontinuous at any x ∈ Q and continuous at
any x ∈ R \Q.31

Observe that any jump function f : [a, b] → R belongs to BV ([a, b]),32

therefore it is differentiable a.e. in [a, b] and its derivative is zero a.e..
Moreover, as they are bounded, they are also Lebesgue-integrable.

There exists non-constant functions f : [a, b] → R which are continuous,
non-decreasing with zero derivative a.e.; such functions are BV but not AC
since the Calculus formula doesn’t hold. A counterexample is again the
Vitali–Cantor function (see definition 1.2.100 on page 73).

Thinking to such counterexample, we can define another kind of function.

31For further discussion, see: A. N. Kolmogorov, S. V. Fomin, Introductory Real Anal-
ysis, 1975, pages 315-327.

32What is its total variation?
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Definition 2.4.26
A non constant function f : [a, b] ⊂ R → R is a singular function
(or Cantor-like function) if:

• f is continuous in [a, b];

• f is non-decreasing;

• ∃ f ′ a.e. and f ′ = 0 a.e. in [a, b].

We see lot of kinds of functions: they are somehow related by the following
result.

Theorem 2.4.27 (Lebesgue decomposition of bounded variation func-
tions)
Let f ∈ BV ([a, b]). Then there exist three functions:

• a function ϕ1 ∈ AC([a, b]);

• a singular function ϕ2;

• a jump function ϕ3

such that
f = ϕ1 + ϕ2 + ϕ3 in [a, b].

33

Notice that, if f ∈ BV ([a, b]), then f ′ = ϕ′
1 a.e. in [a, b]. Thus, as we already

know, we cannot in general reconstruct a bounded variation function by
integrating its derivative: the calculus formula only reconstructs the AC
function of the Lebesgue decomposition, see that if f ′ = ϕ′

1 a.e. in [a, b]
then: ∫ x

a
f ′(t)dt = ϕ1(x)− ϕ1(a).

33For further discussion, see: G. Leoni, A First Course in Sobolev Spaces, 2017, page
104, theorem 3.89.
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2.5 Integrals on product spaces

2.5.1 Product measures part of
this can
be taken
as intro of
the sub-
section.

In this section we discuss on how to measure a function which domain is not
mono-dimensional. We know yet how the Riemann integration has solved
this problem:

x

y

z

The main idea is to calculate the integral through what we know in one
dimension, using the techniques for the integration of one variable:∫∫

Ω
f(x, y)dxdy =

∫ b

a

(∫
Ωx

f(x, y)dy

)
dx =

∫ d

c

(∫
Ωy

f(x, y)dx

)
dy

Now we need to extend this to the Lebesgue and abstract integral. This
technique should be extended to proceed for a very general set. Our goal in
this part is to extend the “reduction” we have just explained to the Lebesgue
integral or, better, to the abstract integral.

Product of σ-algebras Our first step is to build a proper σ-algebra. Let
(X,M) , (Y,N) measure spaces, with X,Y ̸= ∅.
How can we construct a product σ-algebra M ⊗ N such that the “restric-
tions” of its elements with respect to X (or Y ) are measurable set in N (or
M)?
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Definition 2.5.1
A set R ∈ P(X × Y ) is a measurable rectangle if:

R = A×B

where A ∈ M and B ∈ N.

Definition 2.5.2
Let M and N be two σ-algebra. We define the product σ-algebra
as

M⊗N := ⟨{A×B : A ∈ M, B ∈ N}⟩ .

This is the σ-algebra generated by all the measurable rectangles.

This is the smallest σ-algebra containing all the measurable rectangles. At
this point you should be able to prove that B(R2) = B(R)⊗ B(R)

The symbol ⊗ is known as tensor product but we will not study in deep
this operation.

Definition 2.5.3
Let E ⊂ X × Y . Then:

Ex := {y ∈ Y : (x, y) ∈ E} ⊂ Y is called the x-section of E;

Ey := {x ∈ X : (x, y) ∈ E} ⊂ X is called the y-section of E.

Notice that, if we have a rectangle E = A × B, then we have Ex = B for
all x ∈ A and Ey = A for all y ∈ B.
Through the last definition we can provide a proper characterization of the
product σ-algebra M⊗N:

Proposition 2.5.4 (characterization of the product σ-algebra)
Consider a generic rectangle E ⊂ X × Y .
We can define M⊗N as follows:

M⊗N = {E ∈ M⊗N such that Ex ∈ N ∀x ∈ X}
= {E ∈ M⊗N such that Ey ∈ M ∀y ∈ Y }

Proof. Set
C := {E ∈ M⊗N : Ex ∈ N ∀x ∈ X}.
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Obviously C ⊆ M⊗N, and any measurable rectangle is in C. To prove the
opposite relation, we just need to prove that C is a σ-algebra as M ⊗N is
the generated minimal σ-algebra.

First, it is easy to see that any measurable rectangle belongs to C, namely
for any A ∈ M and B ∈ N, A×B ∈ C. In particular, X × Y ∈ C.

Then, notice that if E ∈ C then (EC)x = (Ex)
C ∈ M, which in turn implies

EC ∈ C.

Finally, consider E =
⋃

n∈NEn with En ∈ C. Then:

Ex =

(⋃
n∈N

En

)
X

=
⋃
n∈N

(En)x

The same goes for y-sections. ■

There may exist a set E such that Ex ∈ N for all x ∈ X and Ey ∈ M for
all y ∈ Y but E /∈ M⊗N.34

Measurable functions Now that we have a proper structure we can talk
about measurability.

Definition 2.5.5
Let f : X × Y → R, or [0,+∞], be defined everywhere.
Then we define the x-section fx and the y-section fy of f by set-
ting:

fx : Y → R, fx(y) := f(x, y) ∀x ∈ X fixed;

fy : X → R, fy(x) := f(x, y) ∀y ∈ Y fixed.

(Pay attention: those symbols are not partial derivatives.)

Notice that it’s superfluous now to say “everywhere” because there is still
no measure.

Proposition 2.5.6

34For further discussion, see: E. Hewitt, K. Stromberg, Real and Abstract Analysis,
page 393, exercise 21.26.
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If f : (X×Y,M⊗N) → R, or [0,+∞] is (M⊗N)-measurable, then:

fx is N-measurable ∀x ∈ X;

fy is M-measurable ∀y ∈ Y.

Proof. Let A ⊆ f(X × Y ) be open. Then:

E = f−1(A) = {(x, y) ∈ X × Y : f(x, y) ∈ A} ∈ M⊗N.

Therefore for any A we have (see characterization of product σ-algebra,
proposition 2.5.4 on page 164):

Ex = (fx)−1(A) = (fx)−1(A) ∈ N ∀x ∈ X,

Ey = (fy)−1(A) = (fy)−1(A) ∈ M ∀y ∈ Y.

This means that fx and fy are measurable with respect to the corresponding
σ-algebras. ■

Product measure Now our setting is quite ready: the last theoretical
concept that has to be extended is the measure itself. Consider the measure
spaces (X,M, µ), (Y,N, ν). We would like to build a new measure space
with X × Y and M⊗N. Which measure could be suitable?

First, take into account the following result.

Proposition 2.5.7
Let µ, ν two σ-finite measures, and E ∈ M⊗N. Then:

• x → ν(Ex) is M-measurable;

• y 7→ µ(Ey) is N-measurable;

•
∫
x ν(Ex) dµ =

∫
y µ(Ey) dν.

35

The previous proposition suggests the following.

35To see the proof: A. N. Kolmogorov, S. V. Fomin, Introductory Real Analysis, 1975,
pages 356-359, theorem 3.
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Definition 2.5.8
Consider the set function µ ⊗ ν : M ⊗ N → [0,+∞] defined as
follows:

(µ⊗ ν)(E) :=

∫
X
ν(Ex)dµ =

∫
Y
µ(Ey)dν ∀E ∈ M⊗N.

Then µ⊗ ν is a σ-finite measure and is called product measure of
µ and ν.

Observe that for any measurable rectangle

R = A×B ∈ M⊗N

we have
(µ⊗ ν)(R) = µ(A) · ν(B).

In general, µ⊗ν is not complete even if µ and ν are so (see definition 2.1.32
on page 97).

Example 2.5.9 . Take the sets X = Y = [0, 1] with σ-algebras M = N =
L([0, 1]) and measure µ = ν = λ.
Then let A ∈ L([0, 1]) such that λ(A) = 0, and B ∈ L([0, 1]) such that
λ(B) > 0. So we have (λ⊗ λ)(A×B) = 0.
Now consider the Vitali set U ⊂ B: A×U ⊂ A×B so A×U /∈ L([0, 1])⊗
L([0, 1]).
So A × U is zero-measure subset of the σ-algebra but it is not measurable
then, by definition the measure λ⊗ λ is not complete.

2.5.2 Integrals and Fubini–Tonelli’s theorems

We have build all the ingredients to define the abstract integral on a multi-
dimensional space. Consider the measurable space (X × Y,M⊗N, µ⊗ ν).
In case E ∈ M ⊗ N the reduction formula for characteristic functions
holds: ∫

X×Y
1E d(µ⊗ ν) = (µ⊗ ν)(E) =

∫
X
ν(Ex)dµ =

∫
Y
µ(Ey)dν

This formula can be generalized: the following result shows that it can
be extended to measurable functions. This results is made of two theo-
rem which are different assumptions but the same final result, the iterated
integral formula.
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As painful as it may be to state and comment this two theorems sepa-
rately for an association named “Fubini⊗Tonelli”, this course requires to at
least understand where each one comes from and why they work so well
together.36

Theorem 2.5.10 (Tonelli)
Consider the measure space (X × Y, M⊗N, µ⊗ ν), and let f be a
function (M⊗N)-measurable and defined everywhere in X × Y .
If the function is non-negative, namely 0 ≤ f ≤ +∞, then we have
the iterated integral formula:∫

X×Y
f d(µ⊗ ν) =

∫
X

(∫
Y
fx dν

)
dµ =

∫
Y

(∫
X
fy dµ

)
dν.

Observe that the first part of the iterated integral formula is actually an
abstract integral, as it is defined on a measure.

For this next theorem we require also completeness for both measures.

Theorem 2.5.11 (Fubini)
Consider the measure space (X × Y, M⊗N, µ⊗ ν), and let f be a
function (M⊗N)-measurable and defined everywhere in X × Y .
If f is such that

∫
X×Y |f |d(µ⊗ ν) < +∞, then we have:

fx ∈ L1(Y,N, ν) for almost any x ∈ X;

fy ∈ L1(X,M, µ) for almost any y ∈ Y.

Moreover:

x 7→
∫
Y
fxdν ∈ L1(X,M, µ);

y 7→
∫
X
fydµ ∈ L1(Y,N, ν).

Finally, the iterated integral formula holds.

Corollary 2.5.12
Let µ, ν σ-finite and complete respectively on M, N.

36Somehow like the pieces of Exodia.
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Consider the measure space (X × Y, M⊗N, µ⊗ ν), and let f be a
function (M⊗N)-measurable and defined everywhere in X × Y .
If, in addition, we have that:∫

X

(∫
Y
|fx|dν

)
dµ =

∫
Y

(∫
X
|fy| dµ

)
dν.

Then we have: ∫
X×Y

|f | d(µ⊗ ν) < +∞

and the iterated integral formula holds.

Proof of the corollary. Consider |f |: using Tonelli’s theorem, we deduce
that: ∫

X×Y
|f | d(µ⊗ ν) < +∞,

so we can apply Fubini’s theorem and obtain the iterated integral formula.
■

Thanks to Fubini’s theorem if we have
∑

i,j∈N |aij | < +∞, then:

∑
i∈N

∑
j∈N

aij

 =
∑
j∈N

(∑
i∈N

aij

)
,

and the double series converges.
Set X = Y = N, M = N = P(N) µ = ν = µc, and the measure µc ⊗ µc is
defined with the convention 0 · ∞ = 0.

Completion of a product measure Consider two complete measure space
(X,M, µ) and (Y,N , ν) with σ-finite measure. Then (X×Y,M⊗N, µ⊗ν)
is not complete, but we can consider its completion:

(X × Y, (M⊗N)∗, (µ⊗ ν)∗).

Then Fubini–Tonelli’s theorem can be relaxed:

Theorem 2.5.13
If (X × Y, (M ⊗ N)∗, (µ ⊗ ν)∗) is the completion of (X × Y,M ⊗
N, µ ⊗ ν) and f : X × Y → R, or [0,∞], is (M ⊗N)∗-measurable,
then Fubini–Tonelli’s theorem hold but the inner integrals and the
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iterated integral formula are defined almost everywhere.

If we case of the Lebesgue measure we have:

Proposition 2.5.14
The completion of

(RN × RM , L(RN )⊗ L(RM ), λN ⊗ λM )

is
(RN+M , L

(
RN+M

)
, λN+M ).

Observe that (R× R, L(R)⊗ L(R), λ⊗ λ) is not complete.
Take A ∈ L(R) such that λ(A) = 0 and B ∈ L(R) such that λ(B) > 0.
Consider then a Vitali set V ⊂ B. The rectangle R = A × B is such
that (λ ⊗ λ)(R) = 0 but A × V ⊂ R and (A × V)x = V /∈ L(R) so that
A× V /∈ L(R)⊗ L(R).
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3 Functional Analysis

Real analysis is somehow a generalization of basic calculus notions. We have
seen functions, integrals and in the end we have seen the second theorem of
calculus which is a generalization of the Calculus Formula.
At the beginning of this book we introduced topological spaces which are
geometrical notions. From now on, these two parts will meet with func-
tional analysis.
This is the field of mathematics in which relations between functional spaces
are studied. If in real analysis we worked in finite dimensional space, now
we extend our scope to infinite dimensional spaces, which elements are func-
tions.
First we study such spaces which are, as we see, a generalization of euclidean
spaces, and in a second step we will study operator between those spaces.
We will focus on linear operators.

3.1 Banach spaces

3.1.1 Vector spaces

We are now entering an infinite-dimensional world.

Now we will introduce vector spaces on R. In some contexts other fields are
considered, like C for quantum mechanics applications.

Definition 3.1.1
Consider the set V ̸= ∅.
A tuple (V,+, ·,R) is a vector space on R if the sum of vectors law

u+ v

follows these properties:

• commutativity:
u+ v = v + u;

• associativity:
u+ (v + w) = (u+ v) + w;
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• existence of null element, called zero vector:

u+ 0 = u;

• existence the inverse element:

u+ (−u) = 0;

and the multiplication of a vector by a scalar law

αv with α ∈ R

follows these properties:

• distributivity with respect to the scalar product:

α(βv) = (αβ)v;

• existence of the identity element:

1u = u;

• distributivity with respect to the sum in R:

(α+ β)v = (αv) + (βv);

• distributivity with respect to the sum in V :

α(v + u) = (αv) + (αu).

The elements of V are called vectors.

Generalizing the two operation we have the so called finite linear combina-
tion of vectors:

N∑
j=1

αjvj .

Numerical set RN , with the foretold structure, is a vector space for any
n.
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A vector space is simply an algebraic structure, there is no topology yet so
there is no order.

Definition 3.1.2
Consider a vector space V ⊆ R.
A subset of vectors A ⊂ V is linearly independent if, for any
{v1, . . . , vN} ⊂ A and for any α1, . . . , αN ∈ R, we have:

N∑
i=1

αivi = 0 =⇒ α1 = · · · = αN = 0.

Basis and dimension Can we write for each element of the space as a
linear combination of a special restricted subset of other elements? Yes,
that subset of elements is a basis for the vector space, and for each vector
space we may have more than one basis.

Definition 3.1.3
Consider a vector space V ⊆ R.
A subset of vectors A ⊂ V is an algebraic or Hamel basis if it
is linearly independent and maximal, that is there are no elements
which can be added to it without losing linear independence.

So, if A is an algebraic basis if V , then every element of V can be written
as a finite linear combination of elements of A.

Theorem 3.1.4 (foundamental theorem of linear algebra)
Every vector space on R has at least one algebraic basis.

To prove this theorem if V has at least two elements, in the Zermelo–
Fraenkel theory, we need the axiom of choice. To be more precise, An-
dreas Blass proved in 1984 that this theorem is equivalent to the axiom of
choice.

Proposition 3.1.5
Let V a vector space on R.
Then all its algebraic basis has the same cardinality.

Definition 3.1.6
The dimension of a vector space is the cardinality of one of its
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algebraic basis.

Example 3.1.7 . For example consider the space of the algebraic polynomials:

P(x) =

f(x) =
n∑

j=0

aix
i : n ∈ N; x, a0, . . . , an ∈ R

 .

Since the two canonical operations P + Q and αP can be defined, then P
is a vector space on R. We have that dimP = ℵ0 and one of his algebraic
basis is {1, x, x2, x3, . . . , xn, . . .}.

Example 3.1.8 . Consider also the space of continuous functions:

C(R) = {f : R→ R : f continuous in R}.

We can define the two canonical operations over C(R): indeed, αf + βg ∈
C(R) for all α, β ∈ R and for all f, g ∈ C(R).
Then C(R) is a vector space on R and dim C(R) ≥ ℵ0 since P(x), from the
previous point, is a subspace of C(R).

Definition 3.1.9
A set W is a subspace of the vector space V if

W ⊂ V

and it is closed with respect to vector sum and scalar product,
namely

αv + βu ∈ W

for all α, β ∈ R and for all v, u ∈ W .

3.1.2 Normed vector spaces

In the section assigned to topology (see section 1.2 on page 34) we have
extensively used the notion of distance between two elements. How to
adapt that notion to “label” each element of a set, and in particular of
a vector space, capturing its “largeness”? Here we define the norm, which is
a function that assign a real positive number to each element of the vector
space. As we will see later, norm and distance are strictly related to each
other, in particular the norm can be seen as the distance of the element
from the zero element.
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Definition 3.1.10
Let X be a vector space.
A function ∥·∥X : X → [0,+∞) is called norm in X if the following
properties hold:

• non-negativity:
∥x∥ ≥ 0 ∀x ∈ X;

• annihilation:
∥x∥ = 0 ⇐⇒ x = 0;

• homogeneity with respect to scalar multiplication:

∥αx∥ = |α| ∥x∥ ∀α ∈ R ∀x ∈ X;

• triangular inequality:

∥x+ y∥ ≤ ∥x∥+ ∥y∥ ∀x, y ∈ X.

The tuple (X, ∥·∥X) is called normed vector space.

In the setting of Euclidean spaces, the norm is interpreted as the vector
length; here we have a generalization.

Notice that any normed vector space (X, ∥·∥X) is always a metric space with
respect to the metric induced by the norm. This can be done by defining
the distance as follows:

d(x, y) = ∥x− y∥ ∀x, y ∈ X.

In particular, it is also a topological space with respect to the inducted
topology.

The backward implication is not always true; indeed, a metric space (X, d)
is not necessarily a normed vector space, for example consider a ball in R3

with the euclidean distance; it is not closet with respect to the sum.

Notice that a metric is necessarily induced by a norm unless it is translation
invariant and homogeneous.
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Proposition 3.1.11
The function x → ∥x∥ is continuous with respect to the metric.
Indeed, the following formula holds:

| ∥x∥ − ∥y∥ | ≤ ∥x− y∥ .

This is a sort of inverse triangular inequality: it allows to control the dif-
ference of norms. Prove it!

Proposition 3.1.12
Any norm on RN with canonical operations has the following form:

∥u∥ = c|u| for some c > 0.

Now consider some examples of norm.

Example 3.1.13 . Consider x ∈ X = RN , with n ≥ 2, let p ∈ [1,+∞). The
following are norms:

∥x∥p :=

 n∑
j=1

|xj |p
1/p

∥x∥∞ := max{|x1|, . . . , |xn|}.

Example 3.1.14 . The space of all continuous function

C([a, b]) := {f : [a, b] → R continuous in [a, b]}

is a vector space. An example of a norm in C([a, b]) is

∥f∥∞ := max
t∈[a,b]

|f(t)| .

Example 3.1.15 . There exist examples of norms for other functional spaces:
a norm for L1(Ω,M, µ) is

∥f∥1 :=
∫
Ω
|f(t)|dµ;

while a norm for L∞(Ω,M, µ) is

∥f∥∞ := ess sup
Ω

|f(t)|.
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Example 3.1.16 . The set of converging series

lp :=

{
{xn}n∈N ⊂ R :

∑
u∈N

|xu|p < +∞

}
is a vector space with respect to the canonical operations (you should prove
it), consider X = {xn}n∈N ∈ lp. Then

∥x∥p :=

(∑
n∈N

|xn|p
) 1

p

is a norm in lp.

Example 3.1.17 . Take now

l∞ := {{xn}n∈N ⊂ R : {xn}n∈N bounded};

this is a normed vector space as well and a norm in l∞ is

∥x∥∞ = sup
n∈N

|xn|.

Sequences As we have done at the beginning with metric spaces, having
define a notion of distance allow us to discuss about sequences and their
convergence in those new spaces.

Definition 3.1.18
Let (X, ∥·∥) be a normed vector space.
We say that {xn}n∈N ⊂ X converges to an element x ∈ X if:

∀ε > 0 ∃n0 = n0(ε) ∈ N : d(xn, x) = ∥xn − x∥ < ε ∀n > n0.

In this case we write limn→∞ xn = x or, equivalently xn → x as
n → ∞.

Observe that xn → x if and only if ∥xn − x∥ → 0 as n → ∞.

Notice that we have (see proposition 3.1.11 on the preceding page):

xn → x =⇒ ∥xn∥ → ∥x∥ as n → +∞.

Remember that a converging sequence is fundamental but the converse is
not true, think to (Q, ∥·∥).
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Definition 3.1.19
Let (X, ∥·∥) be a normed vector space.
{xn}n∈N is a fundamental sequence (or Cauchy sequence) in X if:

∀ε > 0 ∃ n0 = n0(ε) ∈ N : ∥xn − xm∥ < ε ∀n,m > n0.

A converging sequence is always fundamental as well, but the converse does
not hold in general. For example consider the ∥f∥1 in C([a, b]).

Definition 3.1.20
Let (X, ∥·∥) be a normed vector space,
We say that E ⊂ X is bounded if exists M > 0 such that:

E ⊆ {x ∈ X : ∥x∥ < M} = BM (0);

where BM (0) is a ball centered in 0 of radius M .

As any sequences still remains a set of elements, this definition fit with se-
quences; indeed, it’s easy to see that any fundamental sequence is bounded.
As we will see, this will be still valid for series as well. Observe also that if
an → a in R and xn → x in (X, ∥·∥) then anxn → ax in X.

The following holds for both metric and topological spaces:

Proposition 3.1.21
Let A ⊂ X, where X is a normed vector space.
Then x⋆ ∈ X is a cluster point37 for A if and only if:

∃ {xn} ⊂ A : xn ̸= x⋆ ∀n ∈ N and xn → x⋆.

Keep in mind that all the topological notion on those two kind of space
depends only on the notion of sequence or neighborhoods respectively.

Series Having a vector space structure and a topology we can introduce
something new which can’t be explained with the theory of metric spaces
only.

37Recalling definition 1.2.11 on page 39 or 1.2.23 on page 45, cluster points are also
known as accumulation points. Those points are the ones which has at least one other
point of the same set in any of their neighborhood.
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Definition 3.1.22
Let (X, ∥·∥) be a normed vector space.
Consider a sequence {xn}n∈N ⊂ X: the sequence of partial sums

Sn :=

n∑
j=0

xj ,

is called series of the elements xn and is denoted by∑
n∈N

xn.

We say that such a series converges to some x ∈ X in (X, ∥·∥) if
we have

∥Sn − x∥ → 0 as n → ∞.

It’s important to remember that a series is defined upon a sequence, it is a
new sequence of which the element n is the sum from element 0 to element
n of the given series. Now let’s dive into this new concept.

Proposition 3.1.23 (generalized triangular inequality)
If
∑

n∈N xn converges in (X, ∥·∥), then we have:∥∥∥∥∥∑
n∈N

xn

∥∥∥∥∥ ≤
∑
n∈N

∥xn∥ .

Proof. Step 0:
If
∑

n∈N ∥xn∥ = +∞, the inequality holds.

Step 1:
We have to prove that the sequence of absolute values is fundamental; con-
sider m > n and define Sm =

∑m
i=0 xi and Sn =

∑m
i=0 xj :

∥Sm − Sn∥ =

∥∥∥∥∥
m∑

i=n+1

xi

∥∥∥∥∥ ≤
m∑

i=n+1

∥xi∥
n,m→+∞−−−−−−→ 0,

where the inequality is true due to the triangular inequality, and the limit
is because ∥Sn − x∥ → 0 with x finite. As the sequence of absolute values
converges, it is fundamental.
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Step 2:
Observe that Sn →

∑
i∈N xi as n → ∞, and thanks to the continuity of the

norm, under the same conditions, we have that

∥Sn∥ →

∥∥∥∥∥∑
i∈N

xi

∥∥∥∥∥ .
Step 3:
Again, using the triangular inequality, we have that:∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

∥xi∥ ∀n ∈ N;

both the members of the inequality converges when n → ∞ and we have
the thesis. ■

Separability Here we remember some topological notions.

Definition 3.1.24
Let (X, τ) be a topological space.
We say that E ⊂ X is dense in X if sE = X

Definition 3.1.25
A topological space (X, τ) is separable if X contains a countable
dense set.

Example 3.1.26 . The space of RN with the standard metric topology, like
(RN , ∥·∥p), is separable p ∈ [1,+∞], with E = Qn.

Moreover, (C([a, b]), ∥·∥∞) is separable, as we can see from the following
result.

At last, a relevant result about continuous function approximation.

Theorem 3.1.27 (Stone–Weierstrass)
Let P([a, b]) be the subspace of algebraic polynomials.
Then P([a, b]) is dense in (C([a, b]), ∥·∥∞).

This means that any continuous function can be approximated as precisely
as desired by a polynomial.
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Norms equivalence As we have done with metrics also for norm we have
a notion of equivalence (see definition 1.2.8 on page 36).

Definition 3.1.28
Let (X, ∥·∥♣), (X, ∥·∥♠) be normed vector spaces.
We say that the norms ∥·∥♣ and ∥·∥♠ are equivalent in X if:

∃m,M > 0 : m ∥·∥♣ ≤ ∥·∥♠ ≤ M ∥·∥♣ ∀x ∈ X.

Observe that two normed space on the same set with two equivalent norm
have the same induced topology: same open sets, same closed sets, same
convergent sequences.

Proposition 3.1.29
In a finite dimensional vector space, all norms are equivalent.

Proof. Without loss of generality, we will prove that in RN all the norms
are equivalent. Consider the norm ∥·∥1 and let ∥·∥ be any other norm; we
have to prove that:

m ∥x∥1 ≤ ∥x∥ ≤ M ∥x∥1 .

Second inequality :
Take the canonical basis in RN : {ej}Nj=1 = {e1, . . . , eN}, so that x =∑N

j=1 αjej and ∥x∥1 =
∑N

j=1 |αj |; we have:

∥x∥ =

∥∥∥∥∥∥
N∑
j=1

xjej

∥∥∥∥∥∥ ≤
N∑
j=1

|xi| ∥ei∥ ≤ M
N∑
i=1

|xj | = M ∥x∥1 ,

where M = max
j∈{1,...,N}

∥ei∥ and so ∥x∥ ≤ M ∥x∥1.

First inequality :
Set ϕ(x) = ∥x∥, by norm continuity ϕ is continuous in RN ; in particular, it
is continuous on the compact set K = {x ∈ RN : ∥x∥1 = 1}, so we have:

|ϕ(x)− ϕ(x0)| ≤ ∥x− x0∥ ≤ M ∥x− x0∥1 .

Thus ϕ has a minimum m ≥ 0 on K due to the Weierstrass theorem, and
we have:

ϕ

(
x

∥x∥1

)
≥ m ∀x ∈ RN .
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It must be m > 0: indeed, if m = 0 for some xm, then xm = 0 /∈ K.

Finally we have ∥x∥ = ϕ(x) ≥ m ∥x∥1 for all x ∈ RN .

Alternatively, one could use the BIM corollary 3.2.44 on page 225 to prove
this second point. ■

It can be proved that any vector space V ⊆ RN , with K = dimV is
isomorphic to RK , that is there exists a linear bijection F : V → RK .
In particular, the previous theorem holds for any finite-dimensional vector
space on RN .

Moreover, consider two vector spaces, namely V1 and V2, whose dimensions
are N1 and N2 respectively. If they are linearly isomorphic, then N1 = N2.
In particular R and RN , with N > 1, cannot be linearly isomorphic, even
if they are equivalent as sets.

Examples of equivalent norms are presented together with examples of Ba-
nach spaces in next section.

3.1.3 Banach spaces

Definition 3.1.30
A normed vector space (X, ∥·∥) is a Banach space if it is complete38

with respect to the metric induced by the norm.

Here a first but relevant observation.

Proposition 3.1.31
Every closed subspace of a Banach space is a Banach space itself.

Consider now some examples.

Example 3.1.32 . The normed vector spaces (RN , ∥·∥p) are Banach spaces
∀p ∈ [1,∞]. All those norms are equivalent each other.

Example 3.1.33 . The normed vector spaces (lp, ∥·∥p) are Banach spaces ∀p ∈
[1,∞].

38See definition 1.2.64 on page 59, a metric space is complete if any fundamental
sequence converges.
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Example 3.1.34 . The normed vector space of the continuous functions (C([a, b]), ∥·∥∞)
is a Banach space. Indeed, if ∥fn − f∥ → 0, then:

∀ε > 0 ∃n0 = n0(ε) ∈ N : |fn(t)− f(t)| ≤ max
t∈[a,b]

|fn(t)− f(t)| < ε.

Moreover, as ∥·∥∞ is not equivalent to the integral norm ∥·∥1, (X, ∥·∥1) is
not a Banach space.
In X = C1([a, b]) the norm ∥·∥∞,1 is equivalent to:

∥f∥ = |f(a)|+
∥∥f ′∥∥

∞ .

Example 3.1.35 . Let k ∈ N0 and define the following space:

Ck([a, b]) := {f : [a, b] → R : f (i) ∈ C([a, b]) ∀i = 1, . . . , k}.

Its norm is

∥f∥∞,k :=
k∑

j=0

∥∥∥f (i)
∥∥∥
∞
.

Then (Ck([a, b]), ∥·∥∞,k) are Banach spaces.

Example 3.1.36 . Consider the following space:

C∞([a, b]) := {f : [a, b] → R : ∃ f (i) ∈ C([a, b]) ∀i ∈ N}.

It is a vector space, but there does not exist a norm such that it becomes a
Banach space. However, it is a complete metric space with the norm:

d∞(f, g) =

∞∑
j=0

2−j

∥∥f (j) − g(j)
∥∥
∞

1 +
∥∥f (j) − g(j)

∥∥
∞
.

Also the space of absolute continuous function is Banach.

Example 3.1.37 . Let X = AC[a, b]. You should prove that

∥f∥⋆ = |f(a)|+
∥∥f ′∥∥

1

is a norm in X, then see the next.

Here we prove that (AC([a, b]), ∥·∥⋆) is a Banach space.
Consider a fundamental sequence of absolute continuous function {fn}n∈N.
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We have to check that this sequence converges to an absolute continuous
function.
Take the sequence {fn(a)}n∈N, it is fundamental and converges in (R, |·|),
so we write fn(a) → α.
Consider also {f ′

n}n∈N, it’s fundamental as well and exists g ∈ L1([a, b])
such that ∥fn − g∥1 → 0 for n → ∞.

By calculus formula we have a relation between those sequences, indeed:

fn(t) = fn(a) +

∫ t

a
f ′
n(τ)dτ t ∈ [a, b].

As f ′
n converges to g, it does also the integral, indeed, for all t ∈ [a, b] we

have:∣∣∣∣ ∫ t

a
(f ′

n − g)(τ)dτ

∣∣∣∣ ≤ ∫ b

a

∣∣ (f ′
n − g)(τ)

∣∣dτ =
∥∥f ′

n − g
∥∥
1
→ 0 as n → ∞.

This implies that fn converges point-wise (and uniformly) in [a, b] to a
function f defined by:

f(t) = α+

∫ t

a
g(τ)dτ t ∈ [a, b],

so that f(a) = α and f ′ = g a.e. in [a, b].
By properties of absolutely continuous functions (see, in particular, 2.4.9
on page 148), f ∈ AC([a, b]) and ∥fn − f∥⋆ → 0 as n → ∞.
Hence, (AC([a, b]), ∥·∥⋆) is a Banach space.

Moreover, AC([a, b]) the following norm is equivalent to the one we present:

∥f∥ = |f(a)|+
∥∥f ′∥∥

1
;

also this norm makes AC([a, b]) a Banach space.

Example 3.1.38 . The space BV ([a, b]) is a Banach space with respect to the
norm

∥f∥ = ∥f∥1 +Vb
a(f),

but ∥·∥AC is not a norm in X.

Finally, notice that in an infinite dimensional vector space it’s possible to
construct non-equivalent norms such that all of them make it a Banach
space.
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Schauder bases Similarly to the algebraic basis for vector space, can we
write any element of a Banach space as a sum of a series of a given sequence
of elements? Yes, what we obtain is a sort of weak version of the algebraic
basis, as we will see this new basis is for a set which is dense in the original
space.

Definition 3.1.39
Let (X, ∥·∥) be a normed vector space on R, {xn}n∈N ⊂ X, and set:

E =

{
k∑

n=0

αnxn : α0, . . . , αk ∈ R, k ∈ N

}
.

Then the sequence {xn}n∈N is a Schauder basis if E is dense in X.

In other words, a sequence is a Schauder basis in X if the set of its finite
linear combinations with rational coefficients is dense in X.

One can easily figure out the following result:

Proposition 3.1.40
If a normed vector space has a Schauder basis, then it is separable.

In general, the reverse is not true.39

Observe that {xn}n∈N is a Schauder basis for (C([a, b]), ∥·∥∞) (see the Stone–
Weierstrass theorem 3.1.27 on page 180).

Characterization of Banach spaces Here we provide one characterization
through the following theorem. It states that a normed vector space (X, ∥·∥)
is a Banach space if and only if any absolutely convergent series converges
in X.40

Theorem 3.1.41
Let (X, ∥·∥) be a normed vector space.
Then:

(X,∥·∥) is a B-space ⇐⇒ [∀{xn}n∈N⊂X,
∑

n∈N∥xn∥<+∞ =⇒
∑

n∈N xn<+∞]

39Proved by Per Henrik Enflo (Stockholm, 1944) in 1975. Thanks to this proof, he
won a goose as a prize.

40Remember that a series
∑

n∈N xn converges absolutely if
∑

n∈N ∥xn∥ converges.
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Proof. Necessary condition =⇒ :
Having that (X, ∥·∥) is Banach, it’s enough to prove that

∑
n∈N xn is fun-

damental. Again by hypothesis,
∑

n∈N ∥xn∥ < +∞.
Define Sn =

∑n
i=0 xi; taking m > n, we have:

∥Sm − Sn∥ =

∥∥∥∥∥
m∑

i=n+1

xi

∥∥∥∥∥ ≤
m∑

i=n+1

∥xi∥ → 0 as n,m → +∞;

hence
∑

n∈N xn is fundamental and, being in a Banach space, it converges.

Sufficient condition ⇐= :
Consider a Cauchy sequence {xn}n∈N. We can construct a sub-sequence
{xnh

}h∈N0 such that: ∥∥xnh+1
− xnh

∥∥ ≤ 1

h2
∀h ∈ N0.

Then, by hypothesis, the series
∑

h∈N0
(xnh+1

− xnh
), which is telescopic,

converges to some x ∈ X, and so the sequence of partial sums does:

Sh+1 = xnh+1
− xn1 → x ∈ X as h → ∞,

which means xnh+1
→ x+ xn1 ∈ X as h → ∞.

From a known result, since we had a Cauchy sequence and we’ve been
able to extract a converging subsequence, then also the Cauchy sequence
converges, namely {xn}n∈N converges. ■

Finite dimensional Banach spaces Here we have another topological no-
tion that we will try to analyze in the context of Banach spaces. We
have seen this property yet, recall definitions of compact space 1.2.69 on
page 61 and sequentially compact space 1.2.77 on page 62, as well Bolzano–
Weierstrass theorem 1.2.20 on page 43, the theorem of characterization of
compact spaces 1.2.80 on page 63 and Heine–Borel’s 1.2.82 on page 64.

Bolzano–Weierstrass states that in a metric space on RN , with any metric,
from any bounded sequence can be extracted a converging subsequence.
Now we know that some metrics coupled with RN constitutes a Banach
space. The following theorem uses the “Bolzano–Weierstrass” property to
characterize finite-dimensional Banach spaces.
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Theorem 3.1.42 (characterization of finite-dimensional Banach spaces)
A Banach space (X, ∥·∥) is finite-dimensional if and only if from any
bounded sequence it is possible to extract a converging subsequence.

Frederic Riesz’s theorem 41 From the previous results we can deduce that
any compact set in a Banach space is closed and bounded. The following
result try to understand how the converse can be true, and an answer is
provided by its corollaries.

Theorem 3.1.43 (Frederic Riesz)
Let (X, ∥·∥) be a a normed vector space.
If the closure of the unit ball B ⊂ X is compact then X is finite-
dimensional.

To prove this we will use the following.

Lemma 3.1.44
If (X, ∥·∥) is a normed vector space and Y ⊊ X is a closed (linear)
subspace then, for all ε > 0, there exists x ∈ X such that:

∥x∥ = 1 and d(x, y) ≥ 1− ε ∀y ∈ Y.

Proof. Let y ∈ X \ Y , and fix y ∈ Y . We have that d(y, Y ) = ∥x− y∥ > 0
as Y is closed.
Suppose that ε ∈ (0, 1), then choose z ∈ Y for which:

d ≤ ∥y − z∥ ≤ d

1− ε
.

Setting:
x =

y − z

∥y − z∥
/∈ Y,

we have for any u ∈ Y that:

∥x− u∥ =

∥∥∥∥ y − z

∥y − z∥
− u

∥∥∥∥ ≥ d

∥y − z∥
≥ 1− ε,

since z + ∥y − z∥u ∈ Y .

If ε > 1 then the proof is trivial. ■
41Frigyes Riesz was an hungarian mathematician whose name is often spelled “Frederic”.

Other Riesz theorem are named after his younger brother Marcel.
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Now we can proceed.

Proof of the Frederic Riesz’s theorem. By contradiction suppose that X is
infinite-dimensional.
Then we can find a sequence of finite-dimensional subspaces {En}n∈N such
that En−1 ⊊ En.
Thanks to the previous lemma, we can construct a sequence {xn}n∈N picking
up an element from each set as follows:

xn ∈ En, ∥xn∥ = 1, d(xn, En−1) ≥
1

2
.

In particular, we have ∥xn − xm∥ ≥ 1
2 for n ̸= m. This means that {xn}n∈N

is bounded but has no convergent sequence. This is a contradiction with the
characterization of finite-dimensional Banach spaces (see theorem 3.1.42 on
the preceding page), so the proof is complete. ■

Frederic Riesz’s theorem has many consequences.

Corollary 3.1.45
A Banach space if finite-dimensional if and only if any bounded and
closed subset is compact.

Corollary 3.1.46
Let (X, ∥·∥) be an infinite-dimensional normed vector space.
Then any compact set has an empty interior; that is it doesn’t
contains any ball.

A compactness criterion for the space of continuous functions Our
goal now is to deduce a compactness criterion for the infinite-dimensional
Banach spaces of continuous functions. The following theorem is the first
step.

Theorem 3.1.47 (Ascoli–Arzelà)
Consider the metric space (C([a, b]), ∥·∥∞), and let {fn}n∈N ⊂ C([a, b]).
If {fn}n∈N is:

• bounded, namely:

∃M > 0 : sup
n∈N

∥fn∥∞ ≤ M ;

188



• equicontinuous, namely:

∀ε > 0 ∃ δ = δ(ε) > 0 :

∀t1, t2 ∈ [a, b] : |t1 − t2| < δ =⇒ |fn(t1)− fn(t2)| < ε ∀n ∈ N;

then there exists a subsequence {fnh
}h∈N such that fnh

→ f in
(C([a, b]), ∥·∥∞).

Notice that as fnh
→ f in norm ∥·∥∞, the convergence is uniform.

Proof. The goal of this proof is to extract a subsequence which converges
uniformly, that is a convergence with respect to the infinity norm.

Step 1 : Let {qj}j∈N be an enumeration of Q ∩ [a, b].

Consider first {fn(q0)}n∈N: because of boundedness, it is bounded in R, so
we can use Bolzano–Weierstrass (see theorem 1.2.20 on page 43) and assert
that there exists a subsequence {fnk0

(q0)}k0∈N which converges.

Consider now {fnk0
(q1)}k0∈N: it is bounded as well, and there exists {fnk1

(q1)}k1∈N
which converges.

Notice that {fnk1
(q0)}k1∈N also converges.

Repeating this argument for every element in {qj}j∈N using a Cantor diag-
onalization argument (the one used to prove that Q is countable), we get a
sequence of functions {fnh

(t)}h∈N which converges point-wise for t = qj .

q1 bq2 q3 q4 · · ·a

· · ·
a /∈ Q
b ∈ Q

Step 2 : Then fix ε > 0. Via equicontinuity, we find δ = δ(ε) > 0 such that:

|fnh
(t1)− fnh

(t2)| < ε
3 ∀t1, t2 ∈ [a, b] : |t1 − t2| < δ ∀h ∈ N.
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Consider now a family of intervals Ii = {[aj , bj ]}Nj=1 such that bj − aj < δ

and ∪N
j=1[aj , bj ] = [a, b]. Then, for any i, we can choose qi ∈ Ii, because Q

is dense in R.

Observe that there exists h0(ε) ∈ N, independent of j, such that42:

|fnh
(qj)− fnh′ (qj)| ≤

ε
3 ∀h, h′ > h0 ∀j = 1, . . . , N.

Step 3 : Let t ∈ [a, b]. Then t ∈ Ii for some i ∈ 1 : N , thus |t − qi| < δ.
Therefore we have, for any h, h′ > h0:

|fnh
(t)− fnh′ (t)| ≤ |fnh

(t)− fnh
(qj)|+ |fnh

(qj)− fnh′ (qj)|+ |fnh′ (qj)− fnh′ (t)|
≤ ε

3 + ε
3 + ε

3

= ε

Thus {fnh
} is a uniform Cauchy sequence, that is a Cauchy sequence with

respect to ∥·∥∞, and it converges in the Banach space (C([a, b]), ∥·∥∞). ■

Also it can be shown that the boundedness and equicontinuity are also
necessary for compactness in (C([a, b]), ∥·∥∞).

Actually, equicontinuity and equiboundedness are also necessary conditions:
namely, if K ⊂ C([a, b]) is compact, then any {fn} ⊂ K satisfies them.

How this theorem is related to compactness? Apparently in the theorem
formulation there is no mention to compactness but we see in the following
example that exists a strong relation.

Example 3.1.48 . Consider the following subset of (C([a, b]), ∥·∥∞):

EM = {f ∈ C1([a, b]) : ∥f∥∞ +
∥∥f ′∥∥

∞ ≤ M}

for some given M > 0.

Thanks to the Ascoli–Arzelà theorem, we can prove that EM is sequentially
compact, and so it is also compact. Indeed, take a sequence {fn}n∈N ⊂ EM :
it is bounded and, owing to the Lagrange theorem, we have:

|fn(x)− fn(y)| ≤ M |x− y| ∀x, y ∈ [a, b], ∀n ∈ N.

Thus the sequence is also equicontinuous so it contains a subsequence which
converges uniformly to some f ∈ EM .

42Since this can be done for any j, it’s enough to take the biggest, as N is finite.
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3.1.4 Lp spaces

As we have seen in Banach spaces examples, we are interested in investi-
gating whether functional spaces are Banach. Our goal in this section is to
prove that the spaces related to Lebesgue-integrable functions are Banach.
First recall the definition of the space of Lebesgue-integral function L1 (see
definition 2.3.1 on page 118) and the definition of the space L1 (see defini-
tion 2.3.30 on page 132). Here we define many other spaces related to those;
a relevant fact is that all these spaces have a vector space structure.

Definition 3.1.49
Let (Ω,M, µ) be complete measure space and fix p ∈ [1,∞).

Lp(Ω,M, µ) := {f : Ω → R measurable : |f |p ∈ L1(Ω,M, µ)};

or, equivalently:

Lp(Ω,M, µ) := {f : Ω → R measurable :

∫
Ω
|f |pdµ < ∞}.

In addition, we define:

Lp(Ω,M, µ) :=
Lp(Ω,M, µ)

∼

where the equivalence relation is f ∼ g ⇐⇒ f = g almost every-
where with respect to µ in Ω.

Since the inequality(
x+ y

2

)p

≤ 1

2
|x|p + 1

2
|y|p ∀x, y ≥ 0

holds, then Lp(Ω,M, µ) is a vector space on R with respect to the standard
operations: {f}+ {g}, α{f}.

For each of those spaces we can define its associated norm.

Definition 3.1.50
Let p ∈ [1,+∞).
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Then

∥f∥p :=
(∫

Ω
|f |pdµ

) 1
p

is a norm in Lp(Ω,M, µ).

The reader should check this definition satisfy all the property required to
a norm, except for the triangular inequality property which coincides with
the Minkowsky’s theorem (see 3.1.56 on page 194), which will be presented
here.

Definition 3.1.51
We define:

L∞(Ω,M, µ) := {f : Ω → R measurable : ess sup f < +∞};

and with the same equivalence relation of the previous definition we
set:

L∞(Ω,M, µ) :=
L∞(Ω,M, µ)

∼
.

Notice that also L∞ is a vector space on R.

Definition 3.1.52
The following

∥f∥∞ := ess sup
Ω

(|f |)

is a norm in L∞(Ω,M, µ).

Then we have for p ∈ [1,∞] that (Lp(Ω,M, µ), ∥·∥p) are normed vector
spaces. Notice that Lp with those norms are not normed vector spaces as
∥f∥ = 0 implies that f = 0 except for a null measure set, while the definition
requires that this holds anywhere in Ω.

From those norm it’s easy to obtain a notion of metric for each p, called dp.
We have already introduced those in the chapter about topology (1.2 on
page 34). With Lp spaces, those distances defines metric spaces. However,
Lp aren’t a metric spaces with respect to dp as dp(f, g) = 0 implies only
that f = g a.e. in Ω.

Relevant inequalities Here are presented three well-known inequalities
which are extremely useful for the development of the theory. In order to
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make the steps more clear, here we do not used the norm notation, but we
added this convention at the end of each proposition.

Definition 3.1.53
Let p ∈ (1,+∞).
The number q ∈ (1,+∞) is called the conjugate of p if

1
p + 1

q = 1.

By extension, the conjugate of p = 1 is q = ∞ and of p = ∞ is
q = 1.

Sometimes the conjugate of p is written as p⋆.

Proposition 3.1.54 (Young’s inequality)
For all a, b > 0 we have:

ab ≤ ap

p
+

bq

q
,

where p ∈ (1,∞) and q is its conjugate index.

Proof. Fix b > 0 and take ϕ(a) := ap

p + bq

q − ab on (0,∞).
Proof follows from the fact that ϕ is convex with a positive absolute mini-
mum. ■

Proposition 3.1.55 (Hölder’s inequality)
Consider two function f ∈ Lp(Ω,M, µ), g ∈ Lq(Ω,Mµ), with p ∈
(1,∞) and q its conjugate index.
Then f, g ∈ L1(Ω,M, µ), and:∫

Ω
|fg|dµ ≤

(∫
Ω
|f |p dµ

)1/p(∫
Ω
|g|q dµ

)1/q

.

In terms of norms, this equality can be written as:

∥fg∥1 ≤ ∥f∥p · ∥g∥q .
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Proof. Suppose p ∈ (1,+∞) and f , g > 0 a.e. Consider:

F (t) =
f(t)

(
∫
Ω |f(t)|p dµ)1/p

and G(t) =
g(t)

(
∫
Ω |g(t)|q dµ)1/q

Using Young’s inequality (3.1.54 on the preceding page), we get:

|FG| ≤ 1
p |F |p + 1

q |G|q∫
Ω
|FG|dµ ≤ 1

p

∫
Ω
|F |p dµ+ 1

q

∫
Ω
|G|q dµ

≤ 1
p

∫
Ω

∣∣∣∣ f(t)

(
∫
Ω |f(t)|p dµ)1/p

∣∣∣∣p dµ+ 1
q

∫
Ω

∣∣∣∣ g(t)

(
∫
Ω |g(t)|q dµ)1/q

∣∣∣∣q dµ

= 1
p + 1

q = 1∫
Ω
|fg|dµ ≤

(∫
Ω
|f |p dµ

)1/p(∫
Ω
|g|q
)1/q

When p = 1, q = ∞, the proof is trivial:∫
Ω
|fg| ≤

∫
Ω
|f | ess sup

Ω
|g|dµ = ess sup

Ω
|g|
∫
Ω
|f |dµ

When p = +∞: ∫
Ω
|fg|dµ ≤ ess sup

Ω
|f |
∫
Ω
|g|dµ

■

Another proof consist of considering:

∥fg∥ =

∫
Ω

∥g∥
1
p
q

∥f∥
1
q
p

f · ∥f∥
1
q
p

∥g∥
1
p
q

g,

apply the young inequality and operate the proper calculations.

Proposition 3.1.56 (Minkowsky’s inequality)
Let f, g ∈ Lp(Ω,M, µ) and p ∈ (1,∞).
Then:(∫

Ω
|f + g|pdµ

) 1
p

≤
(∫

Ω
|f |pdµ

) 1
p

+

(∫
Ω
|g|pdµ

) 1
p

.
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In terms of norms, this equality can be written as:

∥f + g∥p ≤ ∥f∥p + ∥g∥p

Observe that this result shows the triangular inequality for the p norms.

Proof. The prove in case of p = 1 is trivial, here the general case:∫
Ω
|f + g|pdµ =

∫
Ω
|f + g||f + g|p−1dµ

≤
∫
Ω
|f ||f + g|p−1dµ+

∫
Ω
|g||f + g|p−1dµ

≤
(∫

Ω
|f |pdµ

) 1
p
(∫

Ω
|f + g|pdµ

) p−1
p

+

(∫
Ω
|g|pdµ

) 1
p
(∫

Ω
|f + g|pdµ

) p−1
p

=

[(∫
Ω
|f |pdµ

) 1
p

+

(∫
Ω
|g|pdµ

) 1
p

](∫
Ω
|f + g|pdµ

) p−1
p

.

As f + g ∈ Lp(Ω,M, µ) the thesis follows. ■

Relationship between Lp spaces Now we try to understand how those
spaces are related and some of their properties. The Lp spaces, if µ is finite,
make up an ascending chain (see definition 1.1.49 on page 32) with respect
to the inclusion. The greater is p, the less functions belongs. Indeed we
have the following result:

Proposition 3.1.57
If µ(Ω) < +∞ and 1 ≤ s ≤ r ≤ ∞, we have:

Lr(Ω,M, µ) ⊆ Ls(Ω,M, µ)

and the norm can be controlled:

∥f∥s ≤ (µ(Ω))
1
s
− 1

r ∥f∥r .

Proof. Suppose r ≤ ∞ and take f ∈ Lr(Ω,M, µ) and apply the Hölder’s
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inequality with q = r
s and p = r

r−s :

∥f∥ss =
∫
Ω
|f |sdµ =

∫
Ω
1·|f |s ≤

(∫
Ω
dµ

)( r−s
r )(∫

Ω
|f |s·

r
sdµ

) s
r

= µ(Ω)(
r−s
r ) ∥f∥sr

where and the thesis follows. In case of r = ∞, we could repeat the same
argument, but there is a simpler way:∫

Ω
|f |sdµ ≤

∫
Ω
ess sup

Ω
(|f |s)dµ ≤

∫
Ω
(ess sup

Ω
|f |)sdµ = µ(Ω) ∥f∥s∞ .

■

In such case, L1 contains all functions that belong to Lp for any p.

However, if µ(Ω) = ∞, then the former inclusion does not hold in general,
consider the following example.

Example 3.1.58 . Consider (R,L(R), λ) and let:

fα(x) :=
1

xα
1[1,∞] with α ∈ (0, 1).

So fα ∈ Lr for any r > α−1, but fα /∈ Ls for any s ∈ [1, α−1].

The lp spaces The chain of inclusions can be descending in a very special
case. Indeed, we can define

lp := Lp(N,P(N), µc)

and the following proposition holds:

Proposition 3.1.59
For 1 ≤ s ≤ r ≤ ∞ we have:

ls ⊆ lr, ∥f∥r ≤ ∥f∥s .

The inclusion is strict if s ̸= r.

Proof. We recall that lp spaces are correspondent to Lp(N,P(N), µc), with
the counting measure.

Step 1 : Let us prove that lp ⊊ l∞ for any p ∈ [1,+∞).
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Consider x ∈ lp, then43∑
n∈N

|xn|p < +∞ =⇒ |xn| → 0 as n → +∞

In particular, {xn}n∈N is bounded, so that supn∈N |xn| < +∞, hence x ∈ l∞.
Moreover lp ̸= l∞, indeed consider the sequence x = {xn}n∈N defined as
xn = 1 for any n ∈ N, which belongs to l∞ (its norm is 1) but not to lp,
since

∑
n∈N 1

p diverges.

Step 2 : Let us prove that lr ⊂ ls for any 1 ≤ r < s < +∞.

Consider x ∈ lr, we can assume x ̸= 0 (the sequence with all zeros). Define
now

y = {yn}n∈N, yn =
xn
∥x∥r

.

Observe that y ∈ lr, indeed lr is a vector space, and

∥y∥r =
∥∥∥∥ x

∥x∥r

∥∥∥∥
r

=
1

∥x∥r
∥x∥r = 1

This implies that

|yn| ≤ 1, ∀n ∈ N =⇒ |yn|s ≤ |yn|r =⇒
∑
n∈N

|yn|s ≤
∑
n∈N

|yn|r < +∞,

hence y ∈ ls and x = y · ∥x∥r ∈ ls (also ls is a vector space).

Moreover, lr ̸= ls, indeed consider

x = {xn}n∈N, xn =
1

n1/r

then ∑
n∈N

|xn|r =
∑
n∈N

1

n
= +∞ =⇒ x /∈ lr

∑
n∈N

|xn|s =
∑
n∈N

1

ns/r
< +∞ =⇒ x ∈ ls

■

Remember that a function defined on N can be seen as a sequence.
43This very first point is what can’t be done in Lp spaces, namely if f ∈ Lp then not

necessarily f(x) → 0 as x → ∞. Indeed take p = 1 and consider f(x) = 1{n,n+1/n2}(x)

where n ∈ N. You can easily check that its L1 norm converges (
∑

n∈N 1/n
2 < +∞),

however its limit as x → ∞ is not 0.
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Lp spaces are Banach spaces The following is a very relevant result.

Theorem 3.1.60
(Lp(Ω,M, µ), ∥·∥p) is a Banach space for any p ∈ [1,+∞].

Proof. Case p ∈ [1,+∞):
We are going to use the characterization of Banach spaces through the
convergence of series (see theorem 3.1.41 on page 185): a series converges
only if converges the series of absolute values.

Step 0 : Let {fn}n∈N ⊂ Lp be such that
∑

n∈N ∥fn∥p < +∞.
We need to prove that

∑
n∈N fn converges in Lp(Ω,M, µ), from the charac-

terization we have the thesis.

Step 1, convergence in Ω: Set gh(t) =
∑h

n=0 |fn(t)|; from Minkowsky’s
inequality we have that gh ∈ Lp (see proposition 3.1.56 on page 194):

∥gh∥Lp ≤
h∑

n=0

∥fn∥p ≤
∑
n∈N

∥fn∥p < +∞ ∀h ∈ N.

Since gh is an increasing sequence, by monotone convergence (see theorem
2.2.5 on page 109) we have:

lim
h→+∞

∫
Ω
|gh(t)|p dµ =

∫
Ω

lim
h→+∞

|gh(t)|p dµ =

∫
Ω
g(t)p dµ

where g(t) = limh→+∞ gh(t) and, as its norm is bounded, g ∈ Lp (the
absolute value can be removed as g is positive by definition).
Thus |g(t)| < +∞ for almost any t in Ω.

Therefore we have ∑
n∈N

fn(t) < +∞ for almost any t,

the series converges almost everywhere in Ω.

Step 2, convergence in Lp: Set now:

S(t) =
∑
n∈N

fn(t) and Sh(t) =

h∑
n=0

fn(t).
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For almost any t ∈ Ω, using the triangular inequality, we have:

|S(t)− Sh(t)|p =

∣∣∣∣∣
+∞∑

n=h+1

fn(t)

∣∣∣∣∣
p

≤

(∑
n∈N

|fn(t)|

)p

= (g(t))p ∈ L1.

Then, using dominated convergence (see theorem 2.3.2 on page 119), we
have ∥S − Sh∥p → 0 as h → +∞, that is

∑
n∈N fn converges in Lp.

By the characterization theorem, the proof of the considered case is com-
plete.

Case p = ∞, step 1 :
Let {fn}n∈N ⊂ L∞(Ω,M, µ) be a Cauchy sequence, and take those two sets:

An = {t ∈ Ω : |fn(t)| > ∥fn∥∞}
Bm,n = {t ∈ Ω : |fn(t)− fm(t)| > ∥fn − fm∥∞}

where the inequalities are given by definition of the essential supremum.
Notice that we defined those two sequences of sets which catch discontinuity
points in the domain, for each fn.
We have

µ(An) = µ(Bm,n) = 0 ∀m,n ∈ N, and E =

(⋃
n∈N

An

)
∪

 ⋃
m,n∈N

Bm,n


has zero measure.

Then, for all t ∈ EC, we have that the sequence {fn(t)}n∈N converges to
some measurable f . Moreover f ∈ L∞(Ω,M, µ) since {fn(t)}n∈N is bounded
in L∞(Ω,M, µ), as it is a fundamental sequence.

Step 2 : On the other hand, for any ε > 0 there is n0 = n0(ε) ∈ N such
that, for all t ∈ EC, we have:

|fn(t)− fm(t)| ≤ ∥fn − fm∥∞ < ε ∀m,n > n0.

As m → ∞ we have:

|fn(t)− f | ≤ ε ∀n > n0, ∀t ∈ EC

from which we deduce that ∥f − fn∥∞ → 0 as n → ∞.
And the proof is complete. ■
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The case p ∈ (0, 1) When Lp spaces have p less than 1 things are not
going straight. Those spaces does not have a vector space structure and
is not possible to define a norm on them; but it is feasible to prove that
dp(f, g) =

∫
Ω |f − g|p dµ is a metric and the corresponding Lp(Ω,M, µ) is

complete with respect to dp.

However, the reverse Minkowsky’s inequality holds:(∫
Ω
(|f |+ |g|)pdµ

) 1
p

≥
(∫

Ω
|f |pdµ

) 1
p

+

(∫
Ω
|g|pdµ

) 1
p

.

Thus
(∫

Ω |f |pdµ
) 1

p is not a norm, because it does not respect the triangular
inequality. Anyway, inclusion chain follows the same rules as for p > 1; if
µ(Ω) < ∞ then we have:

Lr(Ω,M, µ) ⊆ Ls(Ω,M, µ)

for 0 < s ≤ r ≤ ∞.

3.1.5 Convergence and separability in Lp spaces

Convergence Here some results on sequence of function convergence for
those spaces.

Proposition 3.1.61
Let p ∈ [1,+∞), {fn} ⊂ Lp(Ω,M, µ) be a Lp-converging sequence.
Then {fn} contains a subsequence which converges a.e. in Ω.

Proof. The case p = ∞ is obvious while the case p = 1 is already proved
(see 2.3.34 on page 139). Let’s argue for the other cases. As {fn}n∈N → f ,
we can apply the Chebyshev’s inequality. Consider δ > 0, we have:∫

Ω
|fn − f |pdµ ≥

∫
{t∈Ω: |fn−f |>δ}

|fn(t)− f(t)|pdµ

≥ δpµ({t ∈ Ω : |fn − f | > δ}).

This shows that {fn}n∈N converges in measures, and the thesis follows (see
theorem 2.3.35 on page 139). ■

Moreover we have the following result:
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Proposition 3.1.62
Let {fn} ⊂ Lp(Ω,M, µ) with p ∈ [1,∞).
If fn → f in Lp and fn → g a.e. in Ω, then f = g a.e. in Ω.

Proof. ∫
Ω
|f − g|p dµ =

∫
Ω

lim
n→+∞

|f − fn|p dµ

≤ lim inf
n→+∞

∫
Ω
|f − fn|p dµ (Fatou’s lemma)

= 0

Thus f = g a.e. in Ω. ■

A compactness criterion in Lp spaces Here we present a historically rel-
evant result. First we introduce the notion of the shift operator.

Definition 3.1.63
Given a function f : R → E and a shift value h ∈ R, the shift
operator is defined as follows:

τhf(x) := f(x+ h).

The shift operator essentially evaluate the function after changing its argu-
ment, increasing or decreasing it.

Theorem 3.1.64 (Kolmogorov–Riesz–Frechét)
Let p ∈ [1,+∞), and a bounded set F ⊂ Lp(RN ,L(RN ), λ).
Ifa ∀ε > 0 ∃ δ = δ(ε) > 0 such that:

∥τhf − f∥p < ε ∀f ∈ F ∀h ∈ RN : ∥h∥2 < δ,

for all h ∈ RN such that |h| < δ and any f ∈ F , then F|Ω is
precompactb in Lp(RN ,L(RN ), λ) for any Ω ⊂ RN of finite measure.

Viceversa, if E|Ω is precompact the above condition holds along
with the tail condition: for any ε > 0 there exists Ω ⊂ RN bounded
and measurable such that Lp-norm of f on ΩC is less then ε for all
f ∈ E.
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aThis hypothesis can be equivalently formulated as follows: ∥τhf − f∥ →
0 as ∥h∥2 → 0 uniformly in F .

bA precompact set, also known as relatively compact subspace, is a subset whose
closure is compact.

Separability of Lp(R) Here we discuss of Lp spaces defined on R. Our goal
now is to prove the following theorem (recall definition 1.2.58 on page 58);
to do that we need some other result.

Theorem 3.1.65
Lp(RN ,L(RN ), λ) is separable for all p ∈ [1,+∞).

Observe that p = ∞ is excluded, we will face this case later. The proof will
handle only the case N = 1.

The pathway to prove this result will be the following.

0. PQ([a, b]) is dense in C([a, b]) with the infinity norm (Stone–Weierstrass
theorem).

1. Approximation of finite supported functions with g ∈ CC(R) (Lusin
theorem).

2. S(R) dense in Lp(R) but not countable.

3. CC(R) dense in Lp(R) but not countable.

4. {Pm1[−n,n]}, the set of algebraic polynomials with restricted support,
dense in Lp(R) and countable.

Meanwhile, notice the following, which is a weaker result highlighting the
importance of topology:

Proposition 3.1.66
Let Ω ∈ L(R) and take E := {v ∈ Lp(R) : v = 0 a.e. in ΩC}.
Then E is separable for any p ∈ [1,∞) with respect to the inherited
topology, that is the topology on E created by intersecting the open
sets of Lp(R) with E itself.

Continuous function with compact support Let’s build the tools that we
will use for the proof.
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Definition 3.1.67
Let g = Ω ⊆ R→ R be continuous.
The following set is called the support of g:

supp(g) := {x ∈ Ω : g(x) ̸= 0}.

In other words, the support is the subset of the domain of a function in
which it has a value different from zero.

Example 3.1.68 . Let:

g(x) :=

{
e
− 1

1−x2 if |x| < 1

0 if |x| ≥ 1

In this case supp(g) = [−1, 1].

Support is hence a set, and we know that there exist many kind of sets. In
particular we are interested in the case of such set is compact.

Definition 3.1.69
Let Ω ⊆ R.

CC(Ω) := {f : Ω → R continuous with compact support}.

We have define the set of continuous functions with compact support; the
following result states that any Lebesgue measurable function can be ap-
proximated with one of those functions (similar to Stone–Weierstrass 3.1.27
on page 180).

Theorem 3.1.70 (Lusin)
Let f : R→ R be Lebesgue measurable and let Ω ∈ L(R) such that
λ(Ω) < +∞.
If f(x) = 0 for any ∀x ∈ ΩC, then for all ε > 0 exists a function
g ∈ CC(R) such that:

λ({x ∈ R : f(x) ̸= g(x))}) < ε,
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and one can always choose g such that:

sup
R

(g) ≤ sup
R

(f).44

Density of simple functions with finite measure support Here we define
another set of functions.

Definition 3.1.71
Let S(R) be the set of simple functions with finite measure sup-
port, namely:

S := {s : R→ R simple function such that λ({t ∈ R, s(t) ̸= 0}) < +∞} .

Observe that, if s ∈ S(R) then it necessarily takes non-zero values on finite
measure sets only. Therefore s ∈ Lp(R) for all p ∈ [1,∞) since its range is
finite.

Theorem 3.1.72
The set of simple functions with finite measure support S(R) is
dense in Lp(R) for all p ∈ [1,∞).

Proof. Observe first that S(R) ⊂ Lp(R).
Let f ∈ Lp non-negative. We already know that there exists a sequence of
simple functions {sn}n∈N such that 0 ≤ sn ≤ f and sn ↑ f a.e. in R as
n → +∞.
Since f ∈ Lp, sn ∈ Lp. For sn to be both piece-wise constant and integrable,
it must be zero as t → ±∞, and thus sn ∈ S.
Observing that 0 ≤ |f − sn|p ≤ |f |p a.e. in R, via dominated convergence
we have that ∥f − sn∥p → 0 as n → +∞. ■

Density of CC(R) Also the set of continuous function has some interesting
density property.

Theorem 3.1.73
The set of continuous function with compact support CC(R) is dense
in Lp(R) for all p ∈ [1,∞).

44For further discussion and a proof, see: W. Rudin, Real and Complex Analysis, 1987,
page 55, theorem 2.24.
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Moreover consider Lp(R) as a metric space with distance dp(f, g) = ∥f − g∥p
is the completion of the metric space (CC(R), dp) for each p ∈ [1,∞). If
p = 1, this fact essentially says that the Lebesgue integral is the “natural”
generalization of the Riemann integral.

Proof. Fix ε > 0 and consider f ∈ Lp(R). Thanks to the density of S(R)
we can find a simple function s ∈ S(R) such that:

∥f − s∥p < ε.

Then, using Lusin’s theorem (3.1.70 on page 203), we can find a function
g ∈ CC(R) such that ∥g∥∞ ≤ ∥s∥∞ and

λ{(x ∈ R : g(x) ̸= s(x))} <
εp

2
.

Therefore,

∥g − s∥pp =
∫
R
|g − s|pdλ =

∫
E
|g − s|pdλ

≤
∫
E
(|g|+ |s|)pdλ ≤ λ(E) · 2 ∥s∥p∞ <

εp

2
2 ∥s∥p∞ = (ε ∥s∥∞)p

so we conclude:

∥f − g∥p ≤ ∥f − s∥p + ∥g − s∥p < ε+ ε ∥s∥∞
. ■

Proof of the separability of Lp(R) Now we have all tools to proceed with
this proof.

Proof of 3.1.65 on page 202, case N = 1 and p ∈ [1,∞). Let f ∈ Lp(R) and
fix ε > 0. Because CC(R) is dense in Lp(R), there exists g ∈ CC(R) such
that

∥g − f∥p <
ε

2
.

Since supp(g) is compact, and thus bounded, there exists n ∈ N0 such that
supp(g) ⊆ [−n, n]. Moreover, there exists a polynomial Pm with rational
coefficients such that:

∥g − Pm∥∞ <
ε

2(2n)
1
p

,
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this because the set of polynomials, which is countable, contains any ap-
proximation of a continuous function by Stone–Weierstrass (see theorem
3.1.27 on page 180).

Thus we have (recall proposition on relationship between Lp spaces 3.1.57
on page 195):∥∥f − Pm1[−n,n]

∥∥
p
≤ ∥f − g∥p +

∥∥g − Pm1[−n,n]

∥∥
p

≤ ε

2
+

(∫ n

−n
|g − Pm1[−n,n]|p dλ

) 1
p

<
ε

2
+
∥∥[g − Pm1[−n,n]]

∥∥
∞ (2n)

1
p

< ε

The set {Pm1[−n,n]} is countable and dense in Lp, and then the thesis is
proven. ■

Non-separability of L∞(R) We concentrated to specific cases avoiding a
too much large generality to avoid excessive complexity. This is the remain-
ing case: the prove here is for the mono-dimensional case but it can easily
extended.

Theorem 3.1.74
The space L∞(RN ,L(RN ), λ) is not separable for any N .

Proof of case N = 1. Consider the following uncountable set:

{1[−α,α]}α>0 ⊂ L∞(R).

Observe that
∥∥1[−α,α] − 1[−β,β]

∥∥ = 1 if α ̸= β.

Thus the following family of balls

Bα =
{
f ∈ L∞(R) :

∥∥f − 1[−α,α]

∥∥
∞ < 1

2

}
are mutually disjoint and uncountable.

Suppose now L∞(R) is separable, that is there exists E ⊂ L∞(R) which is
countable and dense. Then any ball Bα must contain at least one element
of E. The balls are disjoint, and thus every ball must contain a different
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element of E. However E is countable and we have uncountably many
balls, so we have a contradiction: we cannot find any countable dense set
in L∞(R). ■

Some final results The following remarks complete our discussion.

In general, L∞(Ω) is not separable when µ(Ω) = ∞.

The space lp is separable if p ∈ [1,∞): l∞ is not separable.

The metric space (CC(R), dp) where p ∈ [1,+∞) and dp(f, g) = ∥f − g∥p is
not complete, its completion is (Lp(R), dp); the metric space (CC(R), d∞) is
not complete as well, but its completion is (C0(R), d∞) where

C0(R) := {f ∈ C(R) : lim
|x|→∞

f(x) = 0}.

The Banach space (RN , ∥·∥p) can be identified with an Lp space; indeed,
set E = {1, . . . , N} and consider Lp(E,P(E), µc) with p ∈ [1,∞].
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3.2 Linear operators

The goal here is to study functions between Banach spaces. In linear algebra
we have already seen functions between finite spaces, but here the topic is
to deal with the infinite dimensionality.
Functions of this kind are called operators or maps. An operator from a
vector space to R is called functional.45

3.2.1 Definition of linear operator and boundedness

Throughout this section, let (X, ∥·∥X) and (Y, ∥·∥Y ) be two normed vector
spaces on R. We’ll use the compact notation “Tx” in place of “T (x)”, if this
does not imply contradictions.

Definition 3.2.1
A map T : X → Y is called linear operator if:

T (αx1 + βx2) = αTx1 + βTx2 ∀α, β ∈ R, ∀x1, x2 ∈ X.

Linearity immediately allows us to prove that L(0) = 0. Indeed, L(αf) =
αL(f), choose α = 0.

Definition 3.2.2
We say that T : X → Y linear operator is bounded if there exists
M > 0 such that:

∥Tx∥Y ≤ M ∥x∥X ∀x ∈ X

or, equivalently, if it maps bounded sets into bounded sets.

Observe that, having not defined an “operator norm” yet, the boundedness
relies only on the norm of the image set.

Here some examples of linear operators in different spaces.

Example 3.2.3 . Consider the finite case X = RN , Y = Rm.
The well-known representation theorem states that a linear operator T :
X → Y can be represented by a matrix A ∈ Rm×n, which depends on the
bases we chose for X and Y , such that Tx = AxT .

45Italian translation: funzionale.
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Apply the euclidean norm:

∥Tx∥2 ≤ M ∥X∥2 with M =

 m∑
j=1

n∑
i=1

|a2ij |

 1
2

.

Thus any linear T is bounded in any norm, as they are all equivalent.

Example 3.2.4 . Consider X = Y = L2([0, 1]). Fix k ∈ L2([0, 1]2), and let:

Tu(x) :=

∫ 1

0
k(x, y)u(y) dy.

This is known as the Hilbert–Schmidt operator: it is linear and bounded.
We want to prove that Tu ∈ L2([0, 1]) for any u ∈ L2([0, 1]). Via the Hölder
inequality, we get:

(Tu(x))2 =

(∫ 1

0
k(x, y)u(y) dy

)2

≤
(∫ 1

0
k(x, y)2 dy

)(∫ 1

0
u(y)2 dy

)
.

Integrating both sides in x we get:∫ 1

0
(Tu(x))2 dx ≤ ∥k∥2L2([0,1]2) ∥u∥

2
L2([0,1]) ,

where, defining M = ∥k∥2L2([0,1]2), we have:

∥Tu∥2L2([0,1]) ≤ M ∥u∥2L2([0,1]) .

Then T is linear and bounded from L2([0, 1]) into itself.

Example 3.2.5 . Consider X = Lp(Ω,M, µ), Y = Lq(Ω,M, µ), with p fixed
and conjugate of q; consider also g ∈ Y .
Then

Tg : f → Tg(f) =

∫
Ω
fg dµ

is a linear functional, and it is bounded via the Hölder inequality: |Tg(f)| ≤∫
Ω |fg|dµ ≤ ∥f∥p ∥g∥q.

Boundedness is equivalent to continuity See this first result.
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Theorem 3.2.6
Let T : X → Y be a linear operator. The following statement are
equivalent:

• T is bounded;

• T is Lipschitz continuous in X;

• T is continuous at x = 0.

Proof. We will prove the pairwise implications.
A bounded linear operator is continuous in its domain.
Let x0 ∈ X, {xn}n∈N ⊂ X such that xn → x0 in X. Then:

∥Txn − Tx0∥Y = ∥T (xn − x0)∥Y ≤ M ∥xn − x0∥X → 0 as n → +∞

Thus Txn → Tx0 in Y .

A linear operator continuous in its domain is continuous in x = 0.
This point is trivial.

A linear operator continuous continuous in x = 0 is bounded.
Suppose, by contradiction, that:

∀n ∈ N0 ∃xn ∈ X \ {0} : ∥Txn∥Y ≥ n ∥xn∥X .

Then take zn = xn
n∥xn∥X

. Observe that zn → 0 in X. Moreover:

Tzn = T

(
xn

n ∥xn∥X

)
=

1

n ∥x∥X
Txn

and

∥Tzn∥Y =
1

n ∥xn∥X
∥Txn∥Y ≥ 1.

Notice that, for any linear operator T , we have T (0) = 0. However, Tzn ̸→
T (0) = 0, and thus T is not continuous. ■

Then, as when an operator is continuous in 0 then is continuous everywhere,
the point 0 can be changed with any other point in this theorem: this, as
we have seen in the proof, is possible due to linearity.
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Example 3.2.7 . Consider the normed vector space X = (C1([−1, 1]), ∥·∥∞),
which is not a Banach space, and consider a linear functional defined as
follows:

Tf = f ′(0).

Let fn(t) =
sin(nt)

n for n ∈ N0: we have ∥fn∥∞ → 0 as n → ∞.
However, Tfn = 1 for any n ∈ N0, thus Tfn ̸→ T (0) = 0 and so T is not
continuous at 0, and it is not bounded.

In this example X is not a Banach space: finding an example of linear un-
bounded operator between infinite dimensional Banach spaces, even a func-
tional, is technically very difficult: the Axiom of Choice is required.

Sets of linear operators and norms Here we define the sets which contains
linear operators.

Definition 3.2.8
Let X and Y two real vector spaces. Then the set of linear opera-
tors form X to Y is:

L(X,Y ) = {T : X → Y : T linear operator}.

On the same setting, the set of linear bounded operators is:

B(X,Y ) = {T : X → Y : T linear bounded operator}.

Notice that, if X is infinite-dimensional, then B(X,Y ) ⊊ L(X,Y ).

Both of them are vector spaces:

Proposition 3.2.9
The spaces L(X,Y ) and B(X,Y ) are vector space with respect to
the standard operations.

Now, recalling that boundedness in defined on the norm of the image space,
we define a norm for bounded operators:

Definition 3.2.10
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The norm for B is:

∥T∥B(X,Y ) := sup
∥x∥X≤1

∥Tx∥Y .

If T ∈ B(X,Y ) then ∥Tx∥Y ≤ M for all x ∈ X such that ∥x∥X ≤ 1.
Then follows that

sup
∥x∥X≤1

∥Tx∥Y

is finite (the reader should prove here that this is a norm, do it!).
So, with the norm previously defined, B(X,Y ) is also a normed vector
space.

This norm can be rewritten in many other forms, providing different inter-
pretations, like specified by the following.

Proposition 3.2.11
These equalities hold:

∥T∥B(X,Y ) := sup
∥x∥X≤1

∥Tx∥Y = sup
∥x∥X=1

∥Tx∥Y = sup
x∈X

∥Tx∥Y
∥x∥X

.

Where the first alternative differs from the definition by the set they pick
x.

Proof. First, as {x : ∥x∥X ≤ 1} ⊇ {x : ∥x∥X = 1}, we have:

sup
∥x∥X≤1

∥Tx∥Y ≥ sup
∥x∥X=1

∥Tx∥Y .

On the other hand, if ∥x∥X ≤ 1, then we have, if x ̸= 0,

∥Tx∥Y = ∥x∥X

∥∥∥∥T ( x

∥x∥X

)∥∥∥∥
Y

≤
∥∥∥∥T ( x

∥x∥X

)∥∥∥∥
Y

=
1

∥x∥X
∥Tx∥Y .

We want to maximize the LHS, which is the same as minimizing the RHS,
which can be done by taking ∥x∥X as biggest as possible (∥x∥X = 1). Hence

sup
∥x∥X≤1

∥Tx∥Y = sup
∥x∥X=1

∥Tx∥Y .

The remaining equality is obvious for x ̸= 0, since

∥Tx∥Y
∥x∥X

=

∥∥∥∥T ( x

∥x∥X

)∥∥∥∥
Y

.
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■

Having defined those norms an observation is required; the operator norm
is defined from the norm of the image space. Then, boundedness of the
operator can depend on the norm of the image space.

Dual spaces In next chapters we will deeply develop the concept of du-
ality. We present here this definition for a complete dissertation of the
matter.

Definition 3.2.12
Consider X vector space and Y = R.
The space X ′ := L(X,R) is said to be the algebraic dual space of
X.
The space X⋆ := B(X,R) is said to be the topological dual space
of X.

From now on in this book, when we write “dual space” without further
specifications, we are referring to topological dual space.

Recalling that operators which have R as image set are called functional,
notice that here we defined the sets of linear functionals and bounded func-
tionals respectively.

The set of bounded linear operators can be a Banach space Consider
the following theorem.

Theorem 3.2.13
If Y is a Banach space, then B(X,Y ) is a Banach space.

Observe that the condition is on the image space, similarly to the bounded-
ness that depends on the norm of the image space, also completeness relies
on the same.

Proof. Let {Tn}n∈N ⊂ B(X,Y ) be a fundamental sequence.
Then{Tnx}n∈N0 is also a fundamental sequence in Y so it converges to some
y ∈ Y for each x ∈ X.
Set now Tx = y; the operator T is clearly linear; we have to prove that T
is bounded.
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Fixed some ε > 0, there exists n̄ = n̄(ε) ∈ N such that:

∥Tnx− Tmx∥Y ≤ ∥Tn − Tm∥B(X,Y ) ∥x∥X < ε ∥x∥X ∀n,m ≥ n̄ ∀x ∈ X.

Now let n go to +∞ and we have:

∥Tx− Tmx∥ < ε ∥x∥X ∀m ≥ n ∀x ∈ X.

And so

∥Tx∥Y ≤ ∥Tx− Tmx∥Y + ∥Tmx∥Y ≤ (ε+M) ∥x∥X ∀x ∈ X

as {Tm}m∈N is bounded by some M > 0.
Therefore T ∈ B(X,Y ) and

∥T − Tm∥B(X,Y ) ≤ ε ∀m > n0.

■

Now observe that, since R with p norm is Banach, then for any X the space
B(X,R) is Banach as well.

3.2.2 Isomorphism

The notion of isomorphism is widely used in mathematics. When we have
two analogous structures then a bijection between them which preserves
their operation is an isomorphism. Here we discuss the linear isomorphism
of normed vector spaces through linear operators and its implications. In
this case we have to preserve the operation and the continuity.

Linear isomorphism Here we analyze the intertwining of three properties
of an operator, that are linearity, boundedness and invertibility. If an oper-
ator satisfy those properties then it preserve the structure of the spaces on
which it works. Then we have an isomorphism.

Definition 3.2.14
Let X and Y two normed vector spaces.
If there exists T ∈ B(X,Y ), such that T−1 ∈ B(Y,X), then X and
Y are isomorphic and T is a linear isomorphism.

Later we will prove a results which states that any bijective operator in
B(Y,X) has those properties and it is a linear isomorphism (see bounded
inverse mapping 3.2.43 on page 224).
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Theorem 3.2.15
Every real normed vector space X on R of dimension N is linearly
isomorphic to RN with any given norm.

Corollary 3.2.16
Let X be a normed vector space on R.
Then any finite dimension subspace of X is closed in X.

The proof of these last two results can be a good exercise for the reader.
You should do this!

Image and kernel Consider the following definition.

Definition 3.2.17
Let T ∈ B(X,Y ). We define the following sets:

Im(T ) := {y ∈ Y : ∃x ∈ X, Tx = y} ⊂ Y, as the image of T and
Ker(T ) := {x ∈ X : Tx = 0} ⊂ X, as the kernel of T .

Those are subspaces of Y and X, respectively.

Proposition 3.2.18
If a linear operator is bounded, then its kernel is closed.

Try to prove this!

Proposition 3.2.19
The operator T ∈ L(X,Y ) is injective if and only if Ker(T ) = {0}.

Isometries Consider the following definition. Observe that here we have
no request on boundedness.

Definition 3.2.20
We say that T ∈ L(X,Y ) is an isometry if:

∥Tx∥Y = ∥x∥X ∀x ∈ X.

Observe that if T is an isometry then is also bounded:
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Proposition 3.2.21
If T is an isometry, then ∥T∥B(X,Y ) = 1 and T is injective. Moreover,
if X is a Banach space, Im(T ) is closed.

Example 3.2.22 . Consider Z = Lp(Ω,M, µ) for p ∈ (1,∞).
Take g ∈ X = Lq(Ω,M, µ) where q is the conjugate of p and define

Lg(f) =

∫
Ω
fg dµ ∀f ∈ Z.

It’s easy to check that Lg ∈ Y = Z⋆. The linear map T : X → Y defined
by T (g) = Lg is an isometry, indeed, we have: |Lg(f)| ≤ ∥f∥Z ∥g∥X and,
via Hölder inequality we get:

∥Lg∥X⋆ = sup
∥f∥Z=1

∣∣∣∣∫
Ω
fg dµ

∣∣∣∣ ≤ ∥g∥X .

Moreover, if we choose

f̃ =
|g|q−2g

∥g∥q−1
X

,

provided that g ̸= 0 and p ̸= 1, we have f̃ ∈ Z and46

T (g)(f̃) = Lg(f̃) = ∥g∥X implies ∥T (g)∥Y = ∥g∥X .

Continuous injections Consider the following definition:

Definition 3.2.23
Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed vector spaces, and X ⊂ Y .
Define:

J : X → Y, Jx = x ∀x ∈ X.

If
xn

X−→ x then xn
Y−→ x,

then the map J is called continuous injection from X to Y , and it
is denoted by

X ↪→ Y.

This definition holds even when the norms are different.
46Try this!
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Example 3.2.24 . Let Ω ∈ L(RN ), with λ(Ω) < +∞.

Lr(Ω) ↪→ Ls(Ω) ∀r ≥ s : r, s ∈ (1,+∞]

Indeed, from ∥f∥x ≤ Cλ(Ω) ∥f∥Ω, we have that fn
Lr

−→ f =⇒ fn
Ls

−→ f .

Example 3.2.25 . lr ↪→ ls ∀r ≤ s (r, s ∈ [1,∞])

Example 3.2.26 . (C([a, b]), ∥·∥∞) ↪→ (C([a, b], ∥·∥1)

Example 3.2.27 . BV ([a, b]) ↪→ L1([a, b])

Example 3.2.28 . AC([a, b]) ↪→ (C([a, b]), ∥·∥∞)

Prove as an exercise the last two examples, using the fundamental theorem
of calculus! Remember that ∥f∥AC = ∥f∥1 + ∥f ′∥1.

Proposition 3.2.29
Let X ↪→ Y and C ⊂ X.
Then C closed in Y implies C closed in X.

Proof. Indeed J is continuous, so J−1(C) = C is closed in X. ■

To prove the previous proposition one can argue that, as J is continuous,
J−1(C) = C and so it is closed in X.

3.2.3 Baire’s categories

This section shows some results which are another insight in the algebraic
structures we have worked with. In this section X can be either a normed
vector space (X, ∥·∥X) or a metric space (X, d).

First, recall the definition of nowhere dense set (1.2.56 on page 57); E ⊂ X

is nowhere dense if ˚̄E = ∅ (the interior of the closure of E is empty), or
equivalently if the closure of E does not contain any ball.
Observe that this is not true of dense set, consider for example Q in R, the
closure of the internal point of Q is not empty. Indeed, for X = R, N and
Z are nowhere dense.

For any Banach space X, a finite-dimensional subspace Y ⊊ X is nowhere
dense with respect to the topology of X.
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A compact set in an infinite-dimensional Banach space is nowhere dense
also.

Every subspace V ⊊ RN of dimension M < N is nowhere dense, with
respect to the topology of RN .

Both the Cantor set and its generalized counterpart are nowhere dense.

First and second category Consider the following definition.

Definition 3.2.30
We say that E ⊂ X is first category if it is a countable union of
nowhere dense sets.
Otherwise we say that E is second category.

First category sets are very small in measure: they are also called meagre
sets.

Example 3.2.31 . Consider X = R and E = Q. Notice that Ē = Q̄ = R,
and ˚̄Q = R, thus Q is not nowhere dense: Q is first category, since is a
countable union of single points.
Notice that Q is an Fσ set, but it is not closed.
Moreover, R \ Q =

⋂
n∈NAn, where An = {xn}C. Every An is open and

dense, and thus R \ Q is Gδ, but it is not open (see definition 2.1.6 on
page 82).

Proposition 3.2.32
There exists subsets E ⊂ R which are either first category and
λ(E) > 0 or second category and λ(E) > 0.
Also R can be written as follows:

R = E1 ∪ E2

where E1 is first category and λ(E2) = 0.

Observe that the union of two first category is still first category, and R is
not first category. Thus E2 must be second category.

Baire’s theorem The following is a topological theorem which is a corner-
stone in functional analysis.
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Theorem 3.2.33 (Baire)
Any complete metric space is second category with respect to its
metric.

Proof. Let X be the space in question. By contradiction, suppose:

X =

∞⋃
n=1

Cn with Cn closed and such that C̊n = ∅ ∀n ∈ N0.

Then define An = CC
n which are open ∀n ∈ N0.

Let x1 ∈ A1. Then there exists ε1 < 1 such that B(x1, ε1) ⊂ A1.
Since C2 cannot contain all B(x1, ε1), then there exists x2 contained in the
open set A2 ∩B(x1, ε1) ̸= ∅.
Thus we can find ε2 <

1
2 such that B(x2, ε2) ⊂ A2 ∩B(x1, ε1).

Iterating this argument, we can construct a decreasing sequence of closed
balls:

B(x1, ε1) ⊃ B(x2, ε2) ⊃ B(x3, ε3) ⊃ · · · ⊃ B(xn, εn) ⊃ · · ·

such that εn < 1
2n and B(xn+1, εn+1) ⊂ An+1 ∩B(xn, εn).

Therefore {xn}x∈N0 is a Cauchy sequence as

d(xn, xm) ≤ 1

2m−1
n ≥ m ≥ 1,

so xn → x for some x ∈ X, because X is complete. Thus there exists
n0 ∈ N0 such that x ∈ Cn0 .

On the other hand, we have xn ⊂ B(xn0 , εn0) ⊂ An0 = CC
n0

∀n ≥ n0, and
thus {x} = ∩n≥n0B(xn, εn) ⊂ A, so x also belongs to An0 = CC

n0
, which is

a contradiction. ■

Corollary 3.2.34
An infinite dimensional Banach space cannot have a countable al-
gebraic basis.

Proof. Suppose that exists a sequence {xn}n∈N ⊂ X is a Hamel basis of the
Banach space X and consider the space generated by the linear combination
of those vectors, namely:

Vn = ⟨{x0, x1, . . . , xn, . . .}⟩
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Then s̊Vn = V̊n = ∅ for any n, but X =
⋃

n∈N Vn, so it is first category. This
contradicts Baire’s theorem, and thus the supposition is false. ■

Corollary 3.2.35
Let (X, ∥·∥) be a Banach space (or (X, d) a complete metric space).
Then, the intersection of any countable family of open dense sets is
dense.

Proof. Let {An}n∈N such that An open and dense (Ān = X) ∀n ∈ N.
Suppose by contradiction that:

C =
⋂
n∈N

An ⊊ X

Thus C is closed, C̊ is open, and there exists B ⊂ EC closed ball in X such
that: (⋂

n∈N
An

)
∩B = ∅.

Then: ⋃
n∈N

(
AC

n ∩B
)
= B.

We also have:
˚

AC
n ∩B ⊂ ˚

AC
n = ÅC

n = ∅

and so
˚

AC
n ∩B = ÅC

n .

If ÅC
n wouldn’t be the emptyset, there would exist a ball B̃ such that B̃ ⊂

AC
n , but �An = X. Therefore, ˚

AC
n ∩B = ∅, (AC

n ∩ B) is nowhere dense,
and we deduce that B is first category. However, B is complete metric
space since it’s closed, and because of Baire’s theorem it should be second
category, which is a contradiction. ■

As an exercise, consider X Banach space and C ⊂ X closed. Prove that
C̊ = ∅ if and only if A = CC is dense.
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3.2.4 Uniform boundedness principle

Here we see how Baire’s theorem has a topological relevance.

Definition 3.2.36
A family F ⊂ B(X,Y ) is point-wise bounded if for each x ∈ X
there exists Mx > 0 such that:

sup
T∈F

∥Tx∥Y ≤ Mx.

Definition 3.2.37
A family F ⊂ B(X,Y ) is uniformly bounded in F ⊂ B(X,Y ) if
exists M > 0 such that:

sup
T∈F

∥T∥B(X,Y ) ≤ M.

Then we have the following, which is known also as uniform boundedness
principle.

Theorem 3.2.38 (Banach–Steinhaus)
Let (X, ∥·∥X), (Y, ∥·∥Y ) be real Banach spaces, and consider a family
F ⊂ B(X,Y ).
If F is point-wise bounded then it is uniformly bounded.

Proof. For each n ∈ N0, define:

Cn = {x ∈ X : ∥Tx∥Y ≤ n ∀T ∈ F}.

Each Cn is closed, indeed consider xn ∈ Cn, xn → x. Since T and the norm
are continuous, ∥Tx∥Y = limn→+∞ ∥Txn∥Y ≤ n0 then x ∈ Cn0 .
Moreover, on account of the point-wise boundedness, we have

X =
⋃
n∈N

Cn.

Via Baire’s theorem, at least one of the Cn is not nowhere dense, namely
there is n0 ∈ N such that C̊n0 ̸= ∅.

Hence there exists ε > 0 and x0 ∈ X for which we find a ball B(x0, ε) ⊂ Cn0 .
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Now, if ∥z∥X ≤ ε, then x0 + z ∈ B(x0, ε). Therefore, ∀T ∈ F :

∥Tz∥Y ≤ ∥T (x0 + z)∥Y + ∥Tx0∥Y ≤ 2n0 ∀T ∈ F .

Finally, observe that, for any T ∈ F and for x ̸= 0:

∥Tx∥Y =
∥x∥X
ε

∥∥∥∥T ( εx

∥x∥X

)∥∥∥∥
Y

≤ 2n0

ε
∥x∥X .

Thus, setting M = 2n0
ε , we get the thesis. ■

Actually, we do not need (Y, ∥·∥Y ) to be a Banach space. Indeed, we applied
Baire’s theorem using the completeness hypothesis only on X.

Consequences This theorem has many consequences:

Corollary 3.2.39
Let X, Y be Banach spaces and consider F ⊂ B(X,Y ).
If F is not uniformly bounded then there exists a Gδ-set G dense
in X such that:

sup
T∈F

∥Tx∥Y = ∞ ∀x ∈ G.

Recall that Gδ-sets are countable intersection of open sets.

Proof. Consider the family of closed sets {Cn}n∈N defined in the proof of
Banach–Steinhaus theorem 3.2.38 on the previous page. Then C̊n = ∅ ∀n ∈
N: otherwise we could find a uniform bound as before.

Define now:

An = CC
n = {x ∈ X : ∃T ∈ F s.t. ∥Tx∥Y > n};

so An is open and dense in X.

Then set
G =

⋂
n∈N

An.

Notice that G is Gδ and is dense in X (see corollary 3.2.35 on page 220).
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Therefore:
sup
T∈F

∥Tx∥Y > n ∀x ∈ G ∀n ∈ N0.

■

Theorem 3.2.40 (Alternative formulation of Banach–Steinhaus)
Let X, Y be Banach spaces and consider F ⊂ B(X,Y ).
Then either F is uniformly bounded or it’s unbounded on a Gδ-set
dense in X.

As an exercise, prove that for any fixed α ∈ R, setting Lαx = αx for all
x ∈ X where X is a Banach space, the family {Tα}α∈R is unbounded at
any x ̸= 0.

Corollary 3.2.41
Let {Tn}n∈N ⊂ B(X,Y ) such that {Tnx} converges in X.
Then there exists a unique T ∈ B(X,Y ) such that:

Tnx
Y−→ Tx ∀x ∈ X as n → ∞.

Proof. By hypothesis, Tnx → y in Y as n → +∞. Therefore we can define
a unique T ∈ L(X,Y ) by setting Tx = y. Moreover, every Tn is bounded,
and so:

∀x ∃Mx > 0 : sup
n∈N

∥Tnx∥Y ≤ Mx.

Via Banach–Steinhaus theorem, ∃M > 0 such that supn∈N ∥Tn∥B(X,y) ≤ M .
Then:

∥Tx∥Y = lim
n→∞

∥Tnx∥Y ≤
(
lim sup
n→∞

∥Tn∥B(X,Y )

)
∥x∥X ≤ M ∥x∥X

and this implies T ∈ B(X,Y ). ■

In general ∥Tn − T∥B(X,Y ) ̸→ 0.

It’s easy to check that there exists T ∈ L(X,Y ) defined as the point-wise
limit on X of the sequence {Tn}n∈N.
Therefore, thanks to the uniform boundedness principle, we have that {Tn}n∈N
is uniformly bounded by some constant M > 0.
Hence we have:

∥Tx∥Y = lim
n→∞

∥Tnx∥Y ≤ M ∥x∥X
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so that T is also bounded.

3.2.5 Open mapping, bounded inverse mapping and closed graph the-
orem

In this chapter we state three theorems which are related to the uniform
boundedness principle. As we’ll see, those results are equivalent each other.

Open mapping and bounded inverse mapping theorems As we have
done with functions, here we discuss the condition on the inverse of a given
operator.

Theorem 3.2.42 (open mapping)
Let (X, ∥·∥X), (Y, ∥·∥Y ) be Banach spaces.
If T ∈ B(X,Y ) is surjective, namely T (X) = Y , then it maps open
sets in open sets.

The proof is based on Baire’s theorem and is quite long.47

Theorem 3.2.43 (bounded inverse mapping)
If T ∈ B(X,Y ) bijective, then T−1 ∈ B(Y,X).

Observe than T is an isomorphism.

Proof. Observe that T−1 is well defined from Y to X with T−1 ∈ L(Y,X).
To prove that T−1 is bounded, it’s enough to prove its continuity. Consider
a open set A ⊂ X, then (T−1)−1(A) = T (A) is open, thanks to the open
mapping theorem. ■

The problem of solving the equation Tx = y, where T ∈ B(X,Y ) and y ∈ Y
is given is well posed if it has a unique solution x for each fixed y ∈ Y and
such x continuously depends on y.
We can say that this problem is well posed if and only if for each y ∈ Y the
equation Tx = y has a solution and ker(T ) = 0.

Here we can briefly discuss about norm equivalence in Banach space. In-
deed, working with these spaces we can have a simpler criteria than defini-
tion 1.2.8 on page 36. The following result shows how.

47For further discussion, see: H. Brezis, Functional Analysis, Sobolev Spaces and Par-
tial Differential Equations, 2010, page 35, theorem 2.6.
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Corollary 3.2.44
Let (X, ∥·∥♠) and (X, ∥·∥♣) be two Banach spaces.
If there exists M > 0 such that

∥x∥♠ ≤ M ∥x∥♣ ∀x ∈ X,

then ∥·∥♠ and ∥·∥♣ are equivalent.

Proof. Consider the identity operator I : (X, ∥·∥♠) → (X, ∥·∥♣).
As I is bijective and continuous, due to 3.2.43 on the facing page, its inverse
I−1 = I is continuous and there exists k > 0 such that

∥x∥♣ ≤ k ∥x∥♠ ∀x ∈ X;

this thanks to the boundedness, having ∥Ix∥ ≤ k ∥x∥.

Set now k = 1
m , we have:

m ∥x∥♣ ≤ ∥x∥♠ ∀x ∈ X,

restoring the full condition. ■

Closedness of an operator and closed graph theory Consider this defi-
nition.

Definition 3.2.45
If X, Y are vector spaces and T ∈ L(X,Y ) then:

G(T ) = {(x, y) ∈ X × Y : y = Tx}

is called graph of T .

Observe that G(T ) is a subspace of X × Y which is a vector space in a
canonical way. It is easy to prove that T ∈ B(X,Y ) has a closed graph in
X × Y . Do it!

Proposition 3.2.46
Let (X, ∥·∥X), (Y, ∥·∥Y ) be Banach spaces.
Then the vector space X ×Y is a Banach space with respect to the
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norm:
∥(x, y)∥X×Y := ∥x∥X + ∥y∥Y .

This norm is equivalent to ∥(x, y)∥p =
(
∥x∥pX + ∥y∥pY

) 1
p with p ∈ [1,+∞),

or to ∥(x, y)∥∞ = max{∥x∥X , ∥y∥Y }.

Definition 3.2.47
We say that T ∈ L(X,Y ) is closed if

xn
X−→ x implies Txn

Y−→ Tx.

The following result has a very simple proof, but its inverse, which is pre-
sented right after, is very important in the development of theory.

Proposition 3.2.48
If T ∈ B(X,Y ), then T is closed.

Proof. If exists T−1 ∈ B(Y,X) then, fixing y0 ∈ Y and x0 = T−1y0, we
have:

∀ε > 0 ∃ δ = δ0(ε, y0) > 0 : Tx ∈ BY (y0, ε) ∀x ∈ BX(x0, δ).

■

Theorem 3.2.49 (closed graph theorem)
If X and Y are Banach spaces, then every closed linear operator is
bounded.

To prove the theorem we will use the following norm, known as the graph
norm:

∥x∥G := ∥x∥X + ∥Tx∥Y .

Before the proof check that this is actually a norm

Proof. Step 1: First, we have to prove that (X, ∥·∥G) is a Banach space:
consider a fundamental sequence {xn}n∈N ⊂ X: it is a fundamental se-
quence with respect to ∥x∥X and {Txn}n∈N is fundamental in Y .
Then (X,Y ) are Banach spaces, and, for some x ∈ X and some y ∈ Y , we
have:

xn
(X,∥·∥)−−−−→ x and Txn

(Y,∥·∥Y )
−−−−−→ y.
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Thus T is closed, y = Tx, so {xm}n∈N converges with respect to {∥·∥G},
namely:

xn
(X,∥·∥G)−−−−−→ x.

Therefore we have (X, ∥·∥X) (X, ∥·∥G) Banach spaces.

It is easy to see that:

∥x∥X ≤ ∥x∥G ∀x ∈ X.

Step 2 : Now we can apply corollary 3.2.44 on page 225, the two norms are
equivalent and, in particular, we have:

∃M > 1 : ∥x∥G ≤ M ∥x∥X ∀x ∈ X.

Then, by definition of ∥x∥G :

∃M > 1 : ∥Tx∥Y ≤ (M − 1) ∥x∥X ∀x ∈ X.

and thus T is bounded. ■

We have proven that open mapping implies bounded inverse, which in turn
implies closed graph. However, it can also be proven that closed graph
implies open mapping: therefore, these theorems are equivalent.

Observe that a non-linear mapping may have a closed graph without being
continuous:

Example 3.2.50 . Take f : R → R defined by f(t) = t−1 if t ̸= 0 otherwise
f(0) = 0.
This isn’t linear nor continuous but it have a closed graph.

Sum up Let us retrace our steps: we have used Baire’s theorem (1899)
to prove the uniform boundedness principle (1927) and the open mapping
theorem (Banach–Schauder, 1929), which is equivalent to bounded inverse
and closed graph theorems.

Proposition 3.2.51
A linear operator T ∈ L(X,Y ) is closed if and only if G(T ) is a
closed subspace of X × Y .
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Hence we conclude T ∈ B(x, y) if and only if G(T ) is closed in X×Y .

Example 3.2.52 . A non-linear operator can have a closed graph without
being continuous. For instance, take:

f(t) :=

{
1
t if t ̸= 0

0 if t = 0
.

228



3.3 Duality

We have already introduced two kind of dual spaces, we will develop those
notions and the properties which they imply.

Moreover we will introduce the notion of reflexivity which is a crucial prop-
erty to develop more tools for applications.

3.3.1 Dual spaces

Recalling the definition 3.2.12 on page 213, given the normed vector space
X, its topological dual space is the space of all linear bounded functional
T : X → R, namely:

X⋆ := B(X,R) = {T ∈ L(X,R) : T bounded},

and its norm is:
∥L∥⋆ := sup

∥x∥X=1
|Lx|.

Notice that X⋆ is always a Banach space (see theorem 3.2.13 on page 213).

Now consider the following two results which we will use them later.

Proposition 3.3.1
If X and Y are isomorphic normed vector spaces, then X⋆ and Y ⋆

are isomorphic.

Proof. Consider an isomorphism J : X → Y .

Give L ∈ X⋆ and define:

Λy = LJ−1y ∀y ∈ Y.

Thus we have a linear map J̃ : X⋆ → Y ⋆ by setting:

J̃L = Λ ∀L ∈ X⋆.

Now it’s easy to prove that J̃ is bounded, injective and surjective.

Therefore, thanks to the bounded inverse mapping theorem (see 3.2.43 on
page 224), we have that J̃ is an isomorphism. ■

Moreover, the following proposition holds.
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Proposition 3.3.2
If X is infinite dimensional, then X⋆ ⊊ X ′.

Characterization of linear bounded functionals
Theorem 3.3.3

Let L ∈ X ′ such that L ̸= 0.
Then the following statements are equivalent:

1. L ∈ X⋆;

2. Ker(L) is closed;

3. Ker(L) ⊊ X, that is KerL is not dense in X.

Proof. We prove the pairwise implications.

Proof of L ∈ X⋆ implies Ker(L) is closed :
Take a sequence xn belonging to the Kernel, that is, Lxn = 0, converging
to some x. We want to show that Lx = 0, but since L is bounded (i.e.
continuous), this is a sequence of zeros which converges to 0, hence L(0) = 0,
so x ∈ Ker(L).

Proof of Ker(L) is closed implies KerL is not dense in X:
By contradiction, suppose Ker(L) = X. As Ker(L) is closed by hypothesis
we have Ker(L) = X, but then it would be L ≡ 0, which goes against the
hypothesis.

Proof of KerL is not dense in X implies L ∈ X⋆:
Again by contradiction, let L /∈ X⋆, and x ∈ X such that Lx = α ̸= 0,
namely x /∈ Ker(L).
Let ε > 0. Since L /∈ X⋆, namely L is unbounded, then ∃ y ∈ B(0, ε) such
that Ly = β with |β| > |α|.
Set γ = −α

β : we have |γ| < 1.
Observe now that

L(x+ γy) = Lx+ γLy = 0,

and thus z = x+ γy ∈ Ker(L), with z ∈ B(x, ε).
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ε

X

Ker(L)

ε

ε

Then48 Ker(L) = X, which is a contradiction. ■

Duality in Lp spaces The following two theorems, the first for the case
p ∈ (1,∞) and the second for the case p = 1, discuss duality for functional
spaces Lp.

Notice that if we are working on Lp, with p ∈ (1,∞), then we can find
g ∈ Lq for which

Lg(f) =

∫
Ω
fg dµ where Lg ∈ (Lp)⋆.

The following theorem goes further providing a complete characterization.

Theorem 3.3.4
Let (Ω,M, µ) a complete measure space.
Consider Lp(Ω,M, µ) for any fixed p ∈ (1,∞).
If Λ ∈ (Lp(Ω,M, µ))⋆ then there exists a unique g ∈ Lq(Ω,M,mu)
where q is the conjugate index of p, such that:

Λ(f) =

∫
Ω
fgdµ ∀f ∈ Lp(Ω,M, µ).

Moreover, we have:

∥Λ∥(Lp(Ω,M,µ))⋆ = ∥g∥Lq(Ω,M,µ) .

Hence (Lp(Ω,M, µ))⋆ and Lq(Ω,M, µ) are isometrically isomorphic
through T : Λ 7→ g.

This one instead develops the case in which p = 1 and q = ∞.

48Remember that saying that ∀x ∈ X, ∀ε > 0, ∃ z ∈ Ker(L), z ∈ B(x, ε) is a way to say
that Ker(L) is dense in X.
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Theorem 3.3.5
Let Ω ∈ L(RN ) and consider L1(Ω,L(Ω), λ).
If Λ ∈ (L1(Ω,M, µ))⋆ then there exists a unique g ∈ L∞(Ω,M, µ)
such that:

Λ(f) =

∫
Ω
fgdµ ∀f ∈ L1(Ω,L(Ω), λ).

Moreover, we have:

∥Λ∥(L1(Ω,L(Ω),λ))⋆ = ∥g∥L∞(Ω,L(Ω),λ) .

Hence (L1(Ω,M, µ))⋆ and L∞(Ω,M, µ) are isometrically isomorphic
through T : Λ 7→ g.

Pay attention to the main difference: the second result only holds in RN

with the Lebesgue measure, while the first one holds in a general metric
space.

We need more tools to discuss the case p = ∞, we will come back to this
at page 235.

3.3.2 Hahn–Banach theorem and consequences

In this section we see the first very relevant theorem for dual spaces: we
will see some of its implications, which are many. It was proved by these
two mathematician independently in late Twenties. Here is reported the
analytic version, but it was also proved a geometric version.49

Theorem 3.3.6 (Hahn–Banach)
Let (X, ∥·∥) be a real normed vector space and Y ⊂ X a non-empty
subspace.
If L0 : Y

⋆ → R then there exists L ∈ X⋆, called the extension of L0

such that:
∥L∥X⋆ = ∥L∥Y ⋆ , L|Y = L0.

Proof. First step: construct an extension by adding a dimension to the orig-
inal subspace.

49For further discussion, see: H. Brezis, Functional Analysis, Sobolev Spaces and Par-
tial Differential Equations, 2010, page 4, section 1.2.
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Let x /∈ Y and set the following:

Z1 = {y + λx : y ∈ Y, λ ∈ R},

L1(y + λx) = L0y + λβ,

where Z is a subspace of X and β ∈ R is such that we have a control for
the norm:

|L1(y + λx)| = |L0y + λβ| ≤ ∥L0∥Y ⋆ ∥y + λx∥ ,

for all y ∈ Y and all λ ∈ R. This gives us ∥L1∥Z⋆
1
≤ ∥L0∥Y ⋆ . On the other

hand:
Z⋆
1 ⊃ Y ⋆ =⇒ ∥L1∥Z⋆

1
≥ ∥L1∥Y ⋆ = ∥L0∥Y ⋆

Hence we have the equality:

∥L1∥Z⋆
1
= ∥L0∥Y ⋆ , L1|Y = L0.

Second step: extension to the complete space.
Consider now the non-empty family of all possible extensions:

S = {(L,Z) : Y ⊆ Z ⊆ X,L ∈ Z⋆, ∥L∥Z⋆ = ∥L0∥Y ⋆ , L|Y = L0}.

Notice that (L1, Z1) ∈ S. Introduce the partial50 order relation:

(L′, Z ′) ≤ (L′′, Z ′′) ⇐⇒ Z ′ ⊂ Z ′′ with L′′|Z′ = L′.

Consider a chain (totally ordered subset) C ̸= ∅ of S and set:

Z̃ =
⋃

Z:(L,Z)∈C

Z.

Observe that Z̃ is a subspace of X, since at every step we’re adding to the
union another subspace.

If x ∈ Z̃ then x belongs to some Z such that (L,Z) ∈ C and also to all Z ′

such that (L′, Z ′) ∈ C and Z ⊂ Z ′.
50The inclusion induces a partial order: having a set included in the other or viceversa

are not the only two possibilities.
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Recalling that L′|Z = L we can define a linear bounded operator L̃ : Z̃ → R
by setting:

L̃x = Lx,

where L is associated to the Z where we first encounter x.
It’s clear that (L̃, Z̃) is an upper bound for C.
Hence S is an inductive set (see definition 1.1.49 on page 32) and, by
Zorn’s Lemma (see proposition 1.1.51 on page 32), it has a maximal el-
ement, namely (L·, Z ·).
Suppose that Z · ⫋ X, then we can construct (see the beginning of this
proof) an extension of (L·, Z ·) but this contradicts its maximality.
Thus Z · = X and L· is the required extension. ■

Notice that we did not even require completeness for X.

Relevant consequences Using the Hahn–Banach theorem we can prove
the following three corollaries.

Corollary 3.3.7
If x ∈ X, with x ̸= 0, then there exits Lx ∈ X⋆ such that ∥Lx∥X⋆ =
1 and Lxx = ∥x∥.

Proof. Let Y {λx : λ ∈ R} and L0(λx) = λ ∥x∥.
So L0 is linear and |L0(λx)| ≤ ∥λx∥ (M = 1).
Notice that ∥L0∥(Y )⋆ = 1 so we can simply apply Hahn-Banach theorem. ■

Corollary 3.3.8
Let x, z ∈ X are such that Lx = Lz for all L ∈ X⋆.
Then x = z, that is the elements of X⋆ separate the points in X.

Proof. By contradiction: let x̃ = x − z ̸= 0. Then, using the previous
corollary, we find L ∈ X⋆ such that Lx̃ = ∥x∥ ≠ 0, and Lx ̸= Lz, which is
absurd. ■

Corollary 3.3.9
Let Y ⊊ X be a closed subspace and x /∈ Y .
Then L ∈ X⋆ such that Lx ̸= 0 and L|Y = 0.

234



Proof. Let

Z = {y + λx : y ∈ Y, λ ∈ R} ⊂ X and L0(λx+ y) = λ.

Then L0 is linear, L0x = 1 ̸= 0, and Ker(L0) = Y is closed.
Thus L0 is bounded on Z (due to 3.3.3 on page 230), and we can apply
Hahn–Banach theorem getting the thesis. ■

Duality in Lp spaces In the previous chapter we discussed duality when
p ∈ (1,∞) (3.3.4 on page 231) and when p = 1 (3.3.5 on page 232), now
with these results we can discuss the remaining case: p = ∞.

Consider a function g ∈ L1(Ω,L(Ω), λ), we set:

Λg(f) =

∫
Ω
fgdλ ∀f ∈ L∞(Ω,L(Ω), λ).

We have that Λg(f) ∈ (L∞(Ω,L(Ω), λ))⋆) with the norm:

∥Λg∥(L∞(Ω,L(Ω),λ))⋆ = ∥g∥L1(Ω,L(Ω),λ) .

Observe that the isometry T : g 7→ Λg is not surjective. Indeed, consider
L : (CC(RN ), ∥·∥∞) → R defined by

L(f) = f(0) ∀f ∈ CC(RN ).

Thanks to the Hahn–Banach theorem, L can be extended to an element
Λ ∈ (L∞(RN ))⋆. However, there is no g ∈ L1(RN ) such that:

Λ(f) =

∫
RN

fgdλ ∀f ∈ L∞(RN ).

Suppose that such g ∈ L1(RN ) exists. Then:∫
RN

fgdλ = 0 ∀f ∈ C∞
C (RN ) such that f(0) = 0.

We have the following result which is analogous to the vanishing lemma.
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Proposition 3.3.10
If Ω ⊆ RN is an open set and u ∈ L1(Ω) is such that:∫

Ω
fudλ = 0 ∀f ∈ C∞

C (Ω)

then u = 0 almost everywhere in Ω.

Reloading the previous discussion we can take Ω = RN \ {0} and conclude
g = 0 almost everywhere in RN .
Therefore L(f) = f(0) = 0 for all f ∈ C∞

C (RN ), and we have a contradic-
tion.

3.3.3 Reflexivity

Since from a space we have constructed its topological dual, we can con-
struct the topological dual of this last one. This is called bidual as we will
state soon. But how many times we can redo this process? At a certain
point must we stop? Sometimes yes, because the bidual is very similar to
the original space, or even it can be the original space itself.

Definition 3.3.11
Consider (X, ∥·∥) be a real normed vector space. The dual of its
dual, namely (X⋆⋆, ∥·∥⋆⋆), is called bidual.

Now we will try to figure out how X⋆⋆ is related to X?

Fix x ∈ X and let

Λx : X⋆ → R, ΛxL 7→ Lx ∀L ∈ X⋆.

Observe that Λx is linear and also bounded: indeed, we have:

|Lx| ≤ ∥L∥⋆ ∥x∥ ∀L ∈ X⋆.

Thus we have Λx ∈ X⋆⋆ and ∥Λx∥⋆⋆ ≤ ∥x∥.

Moreover, we can find L ∈ X⋆ such that ∥L∥⋆ = 1 and Lx = ∥x∥ (see
corollary 3.3.7 on page 234), and thus the maximum is achieved:

∥Λx∥⋆⋆ = ∥x∥ .
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Definition 3.3.12
Let τ : X → X⋆⋆ a map defined as τx = Λx where ΛxL 7→ Lx
∀L ∈ X⋆. Then τ is a linear isometry called canonical map, and
we have:

∥Λx∥⋆⋆ = ∥x∥ .

Observe that τ(X) is a closed subspace of X⋆⋆ but it does no coincide with
it in general. If they coincide we have:

Definition 3.3.13
A normed vector space X linearly isomorphic and isometric to X⋆⋆

is said to be reflexive. In that case we have:

τ(X) = X⋆⋆.

There are some Banach spaces X which are not reflexive, but are linearly
isometric and isomorphic to X⋆⋆ through a different isomorphism.51

Moreover observe that any finite dimensional Banach space (X, ∥·∥) is re-
flexive as they are linear isomorphic to (RN , ∥·∥2).

Proposition 3.3.14
If a normed vector space X is reflexive, then it is also a Banach
space.

Indeed, X is isomorphic to its bidual, which is always a Banach space.

Theorem 3.3.15
Let (X, ∥·∥) be reflexive.
If X is linearly isomorphic to Y , then Y is reflexive too.

Proof. Let J : X → Y be a linear isomorphism, and L ∈ X⋆. Then (see
3.3.1 on page 229) we know that there exists J̃ : X⋆ → Y ⋆.

Consider Λ̃ ∈ Y ⋆⋆, L̃ ∈ Y ⋆. Observe that

Λ̃L̃ = Λ̃J̃L

We define Λ : X⋆ → R,Λ ∈ X⋆⋆, L 7→ Λ̃L̃.
Since X is reflexive, there exists a unique x ∈ X such that ΛL = Lx. So

51This was proved by R. C. James in 1951
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we have
Λ̃L̃ = ΛL = Lx = LJ−1y = L̃y

. ■

Theorem 3.3.16
A space X is reflexive if and only if X⋆ is reflexive.

Proof. Necessary condition =⇒ :
By contradiction: suppose τ(X) ⊊ X⋆⋆, where τ is the canonical map.
Since τ is an isometry and X⋆ is a Banach space (see 3.2.13 on page 213)
and thus τ(X) is a closed subspace (see proposition 3.2.21 on page 216).
Therefore, there exists G : X⋆⋆ → R, such that G ̸≡ 0 and G|τ(X) = 0 (see
3.3.9 on page 234).
Observe that G belongs to the tridual of X, namely: G ∈ (X⋆⋆)⋆.
We have:

GΛx = 0 ∀x ∈ X,

where Λx = τx ∈ τ(X) ⊊ X⋆⋆.

But X⋆ is reflexive, thus τ(X⋆) = X⋆⋆⋆ and, using the canonical map
between X⋆ and X⋆⋆⋆, we have that there exists only one L ∈ X⋆ such
that:

GΛx = ΛxL ∀Λ ∈ X⋆⋆

with L = τ−1(G).

Finally, using the canonical map between X⋆ and X⋆⋆, one can observe that

GΛx = ΛxL = Lx = 0 ∀x ∈ X.

Therefore L ≡ 0 and G ≡ 0 as ∥L∥⋆ = ∥G∥⋆⋆⋆ which is a contradiction.

Sufficient condition ⇐= :
If X is reflexive then it is linear isometric and isomorphic to X⋆⋆. Thus we
can apply the previous problem: X⋆⋆ is reflexive and then X⋆ is reflexive.

■

Theorem 3.3.17
If X is reflexive, then any closed subspace of X is reflexive.
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Proof. Let Y ⊂ X be a non-empty closed subspace of X. Y is a Banach
space.
Let also Λ0 ∈ Y ⋆⋆, and the mapping Λ♯ : X⋆ → R, L 7→ Λ0(L|Y ) ∈ R.
Λ♯ ∈ X⋆⋆. X is reflexive, and thus there exists a unique x0 ∈ X such that
Λ♯L = Lx0.

Suppose x0 /∈ Y by contradiction. Then we can find L0 ∈ X⋆ such that
L0x0 ̸= 0, L0|Y = 0 (see proposition 3.3.9 on page 234). However

L0x0 = Λ♯L0 = Λ0(L0|Y ) = 0

Contradiction, therefore x0 ∈ Y .

Now, for any L̃ ∈ Y ⋆, there exists its Hahn-Banach extension L ∈ X⋆, and
we have:

Λ0L̃ = Λ0(L|Y ) = Λ♯L = Lx0 = L̃x0.

■

Relation between dual spaces and separability Now we have the tools to
set up a proper discussion on how separability is kept or inherited by the
dual.

Theorem 3.3.18
If X⋆ is separable then X is separable as well.

Proof. Let {Ln}n∈N ⊂ X⋆ be dense in X⋆.
Then for any n ∈ N, there exists xn ∈ X such that ∥xn∥ = 1 and

|Lnxn| ≥
1

2
∥Ln∥⋆ =

1

2
sup
∥x∥=1

|Lnx|.

Set now:

E =


N∑
j=0

αjxi : N ∈ N, αj ∈ Q


We have E is countable and Y = sE ⊂ X is a closed subspace.

By contradiction, suppose Y ⊊ X. We find L ∈ X⋆ such that L ̸≡ 0 and
L|Y = 0 (see corollary 3.3.9 on page 234). Since {Ln}n∈N is dense, we have:

∀ε > 0 ∃n0 ∈ N : ∥L− Ln0∥ < ε.
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But the corresponding xn0 belongs to E ⊆ Y , and thus Lxn0 = 0. Therefore:

1

2
∥Ln0∥⋆ ≤ |Ln0xn0 | = |Ln0xn0 − Lxn0 |

≤ ∥Ln0 − L∥⋆ ∥xn0∥ < ε.

Summing up, we have

∥L∥⋆ ≤ ∥L− Ln0∥⋆ + ∥Ln0∥⋆ ≤ ε+ 2ε ∀ε > 0

and thus L ≡ 0, which is a contradiction. ■

Theorem 3.3.19
If X is separable and reflexive then X⋆ is separable.

Proof. If X is reflexive and separable, then immediately we have that X⋆⋆

is separable, you can check this.
Then, from the previous point, X⋆ is separable. ■

Reflexivity on Lp spaces Also for functional spaces we can have reflexivity.
Indeed, we can show that Lp(Ω,M, µ) is reflexive for any p ∈ (1,∞).
In general L1(Ω,M, µ) and L∞(Ω,M, µ) are not reflexive. Consider the case
Ω = R with the Lebesgue measure, L1 is separable but L∞ is not. If L1

were reflexive, it’s separable, then (3.3.19) (L1)⋆ would be separable. This
would make L∞ ≈ (L1)⋆ separable, which is false. On the other hand, if
L∞ were reflexive, then (L1)⋆ would be reflexive, then (3.3.16 on page 238)
also L1 would be reflexive: this is false as we’ve just seen.

Sufficient condition for reflexivity We know that if X is reflexive, then
any bounded sequence contains a weakly-converging subsequence.
We can apply the first consequence of the Hahn–Banach theorem (see propo-
sition 3.3.7 on page 234), to X⋆⋆, ∀L ∈ X⋆ ∃ΛL ∈ X⋆⋆ with norm 1 and
such that ΛLL = ∥L∥⋆.
If X is reflexive, then ∀L ∈ x⋆ ∃x = τ−1(ΛL) with norm 1 and s.t.
Lx = ΛLL = ∥L∥⋆, i.e. one for which the norm is attained.

Definition 3.3.20
Consider a real Banach space (X, ∥·∥).
We say that X is strictly convex, s.c., if for all distinct x, y ∈ X
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such that ∥x∥ ≤ 1 and ∥y∥ it follows:∥∥∥∥x+ y

2

∥∥∥∥ < 1.

We say that X is uniformly convex, u.c., if for all ε > 0 there
exists δ > 0 such that, if x, y ∈ X are such that ∥x∥ ≤ 1, ∥y∥ ≤ 1,
∥x− y∥ > ε then ∥∥∥∥x+ y

2

∥∥∥∥ < 1− δ.

This last property entails that if two points x and y are in the closed unit
ball, even on the boundary, then their mean point must lie deep inside that
same unit ball.

Observe that a uniform convex space is also strictly convex.

The space (RN , ∥·∥p) with N ≥ 2 is uniformly convex if and only if p ∈
(1,∞), but for p = 1 and p = ∞ is not even strictly convex.

It can be shown that, given a real normed vector space X, the Hahn–Banach
extension is unique if X⋆ is strictly convex.52

Theorem 3.3.21 (Milman–Pettis)
Any real uniform convex Banach space is reflexive.

The converse is not true. More precisely, there are some infinite-dimensional
reflexive Banach spaces which are not linearly isomorphic to a uniformly
convex space.53

Remember that any finite-dimensional Banach space is reflexive: uniform
continuity isn’t, indeed, a necessary condition.

Now consider the RN cases; the spaces (R2, ∥·∥∞) and (R2, ∥·∥1) both have
“square” unit balls: we can check that they are not uniformly convex spaces.
However, we know that both of them are reflexive and linearly isomorphic to
(R2, ∥·∥2) which is uniformly convex. Indeed, we can prove that (RN , ∥·∥2)
is reflexive for any n.54

52A.E. Taylor proved in 1939 that the condition is sufficient while S. Foguel in 1958
proved that is also necessary.

53Proven by M.M. Day in 1941.
54This via uniform convexity, via equivalence of weak and strong convergence and

Bolzano-Weierstrass’ theorem or via James’ theorem.
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Spaces Lp(Ω,M, µ) with p ∈ (1,+∞) are reflexive.

Clarkson’s inequalities We could also prove it via Milman–Pettis and the
following inequalities.

Proposition 3.3.22
Let f, g ∈ Lp(Ω,M, µ) with p ∈ (1,∞).
The Clarkson’s inequalities holds:∥∥∥∥f + g

2

∥∥∥∥p
p

+

∥∥∥∥f − g

2

∥∥∥∥p
p

≤ 1

2

(
∥f∥pp + ∥g∥pp

)
p ∈ [2,∞)∥∥∥∥f + g

2

∥∥∥∥q
p

+

∥∥∥∥f − g

2

∥∥∥∥q
p

≤
(
1

2
∥f∥pp +

1

2
∥g∥pp

)q/p

p ∈ (1, 2)

Where q is p’s conjugate.

Characterization of reflexivity As we have seen uniform convexity is only
a sufficient conditions but there exist some necessary and sufficient condi-
tions for reflexivity.

Theorem 3.3.23 (James)
Let X be a Banach space. Then X reflexive if and only if any
L ∈ X⋆ has a maximum on the unit ball.

The implication is trivial: if L ∈ X⋆ then by applying HB first corollary
(3.3.7 on page 234) on X⋆ there exists Λ ∈ X⋆⋆ such that ∥Λ∥⋆⋆ = 1 and
ΛL = ∥L∥⋆; therefore, for x = τ−1(Λ) we have Lx = ∥L∥⋆ with ∥x∥ =
1.

3.3.4 Weak convergence

From now on, let (X, ∥·∥) be a Banach space.

Definition 3.3.24
We say that he sequence {xn} ⊂ X weakly converges to x ∈ X if,
for all L ∈ X⋆ we have:

Lxn → Lx as n → ∞;
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in such case we will write:

xn ⇀ X.

From now on, we will refer to xn → x as strong convergence.
Observe that the strong convergence implies the weak one. Indeed, if xn →
x in X, then |Lxn − Lx| ≤ ∥L∥⋆ ∥xn − x∥ → 0 for any L ∈ X⋆, and thus
xn ⇀ x.
In general, the converse is not true; consider the following example:

Example 3.3.25 . Take X = L2([−1, 1]) and let fn(t) = sin(nt), with n ∈ N.
Clearly fn ̸→ 0, but it is easy to prove that fn ⇀ 0: since (L1)⋆ ≈ L∞, we
have: ∫ 1

−1
fn(t)g(t) dt → 0 ∀g ∈ L∞([−1, 1]).

Check this as an exercise.

You can show also that if X is finite dimensional then the converse holds.
Indeed: consider (RN , ∥·∥2). If xn ⇀ x, then Lxn → Lx ∀L ∈ (RN )⋆.
But, ∀L ∈ (RN )⋆, ∃! a ∈ RN : Ly = ⟨a, y⟩, thus:

⟨a, xn⟩ → ⟨a, x⟩ ∀a ∈ RN

Taking a = ej , we have xjn → xj , i.e. strong convergence in each coordi-
nate.

This implies that xn → x in ∥·∥∞ so, by equivalence: xn → x in ∥·∥2 and
in every norm which makes RN a Banach space.

By isometry, we deduce that in any finite dimensional Banach space the
weak convergence implies the strong one.

Finally notice that weak and strong convergence are equivalent in l1.

Basic properties We can easily deduce some properties of this new kind
of convergence.

Proposition 3.3.26
The weak limit is unique.

Proof. Suppose (xn ⇀ x) ∧ (xn ⇀ x̃) with x ̸= x̃.
Then for any L ∈ X⋆, (Lxn → Lx) and (Lxn → Lx̃).
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The strong limit is unique, so Lx = Lx̃ for any L ∈ X⋆, and finally using
HB second corollary 3.3.8 on page 234 we get x = x̃. ■

Proposition 3.3.27
If xn ⇀ x, then {xn} is bounded in X.

Proof. A sequence {Lxn} is bounded for each L ∈ X⋆ since it’s a convergent
sequence in R.
Set TnL = Lxn for any L ∈ X⋆. Applying the uniform boundedness prin-
ciple (see theorem 3.2.38 on page 221) to {Tn} ⊂ X⋆ we have that there
exists M > 0 such that:

∥Tn∥⋆⋆ ≤ M.

Moreover, for each n ∈ N, we can find (3.3.7 on page 234) Ln ∈ X⋆ such
that ∥Ln∥⋆ = 1 and Lnxn = ∥xn∥. So we have:

∥xn∥ = |Lnxn| = |TnLn| ≤ ∥Tn∥⋆⋆ ∥Ln∥⋆︸ ︷︷ ︸
=1

≤ M.

■

Proposition 3.3.28
The norm function is lower semi-continuous with respect to the weak
convergence, namely if xn ⇀ x then:

∥x∥ ≤ lim inf
n→∞

∥xn∥ .

Proof. Using HB first corollary (3.3.7 on page 234), let L ∈ X⋆ such that
norm ∥L∥ = 1 and Lx = ∥x∥. We have that:

0 < ∥x∥ = Lx = lim
n→+∞

Lxn = lim
n→+∞

|Lxn| = lim inf
n→+∞

|Lxn| ≤ lim inf
n→∞

∥xn∥ .

We can put the absolute value in |Lxn| because the limit is the norm of x,
which is non negative. ■

Proposition 3.3.29
If xn ⇀ x and Ln

X⋆

−−→ L, then Lnxn → Lx.
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Proof. As n → +∞ we have:

Lnxn − Lxn = |(Ln − L)|xn ≤ ∥Lx − L∥⋆M → 0

Lnxn − Lx = Lnxn − Lxn + Lxn − Lx

= (Lnxn − Lxn) + L(xn − x) → 0.

■

What happens to the weak convergence when Y ̸= R? We have the following
result.

Proposition 3.3.30
Let X, Y be Banach spaces and T ∈ B(X,Y ). Then xn ⇀ x implies
Txn ⇀ Tx. In this case we say that T is weak-weak continuous.

Proof. Let L ∈ Y ⋆.
The mapping x 7→ LTx is an element of X⋆.
Now set Λx = LTx with Λ ∈ X⋆.
We have Λxn → Λx as xn ⇀ x; so we have:

LTxn → LTx ∀L ∈ Y ⋆

that is the definition of Txn ⇀ Tx. ■

Proposition 3.3.31
Let X be reflexive. If {Lxn} converges for any L ∈ X⋆, then there
exists a unique x ∈ X such that xn ⇀ x.

Proof. Fix n ∈ N, then let {Tn}n∈N ⊂ X⋆⋆ such that TnL = Lxn for each
L ∈ X⋆.
We have (see corollary 3.2.41 on page 223) that {Tn} converges point-wise
to some T ∈ X⋆⋆.
Setting x = τ−1(T ) we have Lxn = TnL → TL = Lx for any L ∈ X⋆. The
thesis is proven. ■

Weak⋆ convergence Analogously, we can define a weak convergence no-
tion also for functionals.
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Definition 3.3.32
We say that {Ln} ⊂ X⋆ weakly⋆ converges to L ∈ X⋆ if, for all
x ∈ X we have:

Lnx → Lx as n → ∞;

in such case we will write:

Ln
⋆
⇀ L.

In X⋆, both weak convergence and weak⋆ convergence are defined, but the
latter is weaker. Indeed:

Ln
⋆
⇀ L ⇐⇒ Lnx → Lx ∀L ∈ X

Ln ⇀ L ⇐⇒ ΛLn → ΛL ∀Λ ∈ X⋆⋆

Ln
⋆
⇀ L =⇒ ΛLn → ΛL ∀Λ ∈ τ(X)

where ΛLn = Lnx, ΛL = Lx. Therefore, such convergences are equivalent
if and only if τ(X) = X⋆⋆, that is if and only if X is reflexive.

If X is not reflexive we still have Ln ⇀ L =⇒ Ln
⋆
⇀ L.

Arguing as before we have the following properties

Proposition 3.3.33

• The weak⋆ limit is unique;

• If Ln
⋆
⇀ L then {Ln} is bounded in X⋆;

• The norm is lower semi-continuous with respect to the weak⋆

convergence, that is, if Ln
⋆
⇀ L then ∥L∥ ≤ lim inf

n→∞
∥Ln∥⋆;

• If (xn → x) and (Ln
⋆
⇀ L) then Lxxn → LX.

A weak⋆ compactness criterion

Theorem 3.3.34 (Banach–Alaoglu)
Let X be a separable Banach space.
Then any bounded sequence {Ln}n∈N ⊂ X⋆ contains a subsequence
which weakly⋆ converges to some L ∈ X⋆.

Separability is necessary, consider the following example.
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Example 3.3.35 . Take X = l∞ and {Ln}n∈N ⊂ X⋆ such that:

Lnx = xn ∀x = {xn}n ∈ l∞.

Notice that Ln is obviously bounded, namely ∥Ln∥⋆ ≤ 1, because |Lnx| ≤
∥x∥∞.
Anyway Ln does not contain any weakly⋆ convergent sub-sequence: if there
exists any {Lnk

}k, taking x = {(−1)nk}nk∈N we reach a contradiction
Lnk

x = (−1)nk does not converge as n → +∞.

Proof. First, let M = supn∈N ∥Ln∥⋆ ∈ [0,+∞).
Consider a sequence {xk}k∈N ⊂ X dense in X.
Take the sequence {Lnx0}n∈N ⊂ R which is bounded. By Bolzano–Weierstrass
theorem (1.2.20 on page 43) there exists a converging subsequence {Lnj0

x0}j0∈N.
Take also the bounded sequence {Lnj0

x1}: there exists a converging subse-
quence {Lnj1

x1}j1∈N.

By diagonalization (see for analogy the proof of Ascoli–Arzelà theorem
3.1.47 on page 188) we can extract {Lnh

}h∈N such that {Lnjxk}j∈N con-
verges for any k ∈ N with respect to j.

Consider x ∈ X and fix ε > 0. Via separability, we can find xk such that
∥x− xk∥ ≤ ε

2M .

Observe now that:

|Lnix− Lnjx| ≤ |Lnix− Lnixk|+ |Lnixk − Lnjxk|+ |Lnjxk − Lnjx|.

We have:

|Lnix− Lnixk| ≤ M ∥x− xk∥ ≤ ε
2 ,

|Lnjxk − Lnjx| ≤ M ∥x− xk∥ ≤ ε
2 .

Moreover, {Lnjxk}j∈N converges as it is a fundamental sequence, and we
can find j′ ∈ N such that:

|Lnixk − Lnjxk| ≤ ε ∀i, j ≥ j′.

Summing up:
|Lnix− Lnjx| ≤ 2ε ∀i, j ≥ j′.
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Therefore {Lnjx} is a Cauchy sequence and converges. Via an implication
of the uniform boundedness principle (see corollary 3.2.41 on page 223),
there exists L ∈ X⋆ such that Lnjx → Lx ∀x ∈ X. An this concludes the
proof. ■

Example 3.3.36 . Consider the space (Ω,L(Ω), λ) with Ω ⊆ RN and λ(Ω) >
0, and a sequence {fn}n∈N ⊂ L∞(Ω).
Set:

Ln(g) =

∫
Ω
fng dλ ∀g ∈ L1(Ω).

If {fn}n∈N is bounded, then {Ln}n∈N is bounded in (L1(Ω))⋆.
By Banach–Alaoglu theorem, as L1(Ω) is separable, we can extract a sub-
sequence {Lnh

}h∈N which weakly⋆ converges to an L ∈ (L1(Ω))⋆, namely:

Lnh
(g) → L(g) ∀g ∈ L1(Ω) as h → ∞.

Moreover, we know that exists a unique f ∈ L∞(Ω) such that:

L(g) =

∫
Ω
fg dλ ∀g ∈ L1(Ω).

Therefore the weak⋆ convergence can be written in terms of integrals as
follows: ∫

Ω
fnh

g dλ →
∫
Ω
fg dλ ∀g ∈ L1(Ω,M, µ) as h → ∞.

This is an example of the statement “for any bounded sequence in L∞(Ω)
we can extract a weakly⋆ convergent subsequence”.

Remember also that L1(Ω,M, µ) is separable if, for instance, Ω ∈ L(RN ) =
M. It may not be separable in some extremely pathological cases.

Considering also the reflexivity Reflexivity is a strong assumption. Can
we say more if X is also reflexive?

Proposition 3.3.37
If X is separable and reflexive, then any of its bounded sequences
contains a weakly-converging sub-sequence.
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Proof. Let {xn}n∈N ⊂ X a bounded sequence.
As X⋆ is separable we can apply the Banach–Alaoglu theorem to {τ(xn)}n∈N ⊂
X⋆⋆, which is bounded since xn is a bounded sequence and the canonical
map is isometric, and find {τ(xnh

)}h∈N such that

τ(xnh
)

⋆
⇀ Λ

as h → ∞ for some Λ ∈ X⋆⋆.
Thanks to the reflexivity of X we have that x = τ−1(Λ) and

xnh
⇀ x

as h → ∞. ■

Another characterization for reflexivity Actually we can say much more:
separability is not necessary in statement 3.3.37 on the preceding page.
Moreover the converse holds:

Theorem 3.3.38 (Eberlin–Šmulian)
If X is a Banach space in which any bounded sequence contains a
weakly-converging subsequence, then X is reflexive.

Let {fn}n ⊆ Lp(Ω,L(Ω), λ) with p ∈ (1,+∞) and λ(Ω) > 0.
We know that Lp is separable, and hence (Lp)⋆ ≈ Lq, with p, q conjugates:
operators on Lp can be represented as integrals with an appropriate Lq

function.
If {fn} is bounded, then there exists a subsequence {fnk

} and a function
f ∈ Lp such that

∫
Ω fnk

g dλ →
∫
Ω fg dλ ∀g ∈ Lq, and, in particular,

Lgf =
∫
Ω fg dλ and Lg ∈ (Lp)⋆ ≈ Lq.

Summing up, if p ∈ (1,∞), from any bounded sequence in Lp(Ω) we can
extract a weakly convergent subsequence.

3.3.5 Linear compact operators

Now we see a further property for linear operator. Here we require an
improvement of the image of the operator that paves the way to new re-
sults.

Throughout this section, let (X, ∥·∥X), (Y, ∥·∥Y ) be Banach spaces.
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Definition 3.3.39
A linear operator K ∈ L(X,Y ), K : X → Y is compact if for any
bounded set B ⊆ X the image KB is precompact in Y , i.e. KB is
compact. Their space is defined as

K(X,Y ) := {K ∈ L(X,Y ) compact}.

The term precompact means that its closure is compact.

In other words, any bounded sequence {yn}n ⊆ KB contains a converging
subsequence which limit needs not to be in KB.

If X = Y , then often it is written as K(X).

Proposition 3.3.40
Any compact operator is bounded.

Proof. Take the unit ball B = B1(0) ⊆ X.
As KB is precompact, KB is compact, so it is is also bounded.
Therefore there exists M > 0 such that:

∥K∥⋆ = sup
x∈�B

∥Kx∥ ≤ M

that is, K ∈ B(X,Y ). ■

Definition 3.3.41
A linear operator is finite-rank if its image is finite dimensional.

Proposition 3.3.42
A finite-rank bounded operator is also compact.

Indeed, notice that if T ∈ B(X,Y ) and Y is finite-dimensional then T is
compact.
However, there are compact operators which are not finite-rank: consider
(C([a, b]), ∥·∥∞) and, for each u ∈ C([a, b]), set:

Ku(t) =

∫ t

a
u(s)ds ∀t ∈ [a, b].
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The linear operator K : C([a, b]) → C([a, b]) is compact (see Ascoli–Arzelà
theorem 3.1.47 on page 188), indeed we have Im(K) = {f ∈ C1([a, b]) :
f(a) = 0}.

Note also that if X and Y are infinite-dimensional, then K(X,Y ) ⊊ B(X,Y ).
An example of bounded, non-compact operator is the identity map, if
X = Y infinite-dimensional.

Definition 3.3.43
If Y is a subspace of X and the identity I : Y → X is compact we
say that Y is compactly embedded in X and we write:

Y ↪→↪→ X.

Proposition 3.3.44
Let X be an infinite dimensional Banach space.
Then a compact operator K : X → X cannot be bijective.

Proof. By contradiction, take {yn}n∈N ⊂ B, where B is the unit ball of X.
Consider now xn = K−1yn: the sequence {xn}n∈N is bounded, as K−1 is
bounded.
Since {yn}n∈N contains a convergent sub-sequence, B is compact, which is
a contradiction to 3.1.43 on page 187. ■

Characterization for compact operators To prove directly the compact-
ness is not an easy task, anyway we can find a criterion to do the job.

Theorem 3.3.45 (Compactness characterization)
If K ∈ K(X,Y ) and xn ⇀ x, then:

Kxn → Kx.

This means that K is weak-strong continuous.

Moreover, if X is reflexive and K ∈ B(X,Y ) is weak-strong contin-
uous, then K is also compact.

Proof. The two parts will be proved separately.
Proof of the first part:
Suppose K ∈ K(X,Y ) and xn ⇀ x. Being also bounded (see 3.3.40 on
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page 250), K is weak-weak continuous (see 3.3.30 on page 245), namely
Kxn ⇀ Kx.
If {xn} is bounded, we have that {Kxn} is also bounded and contains a
strongly convergent subsequence, and {Kxn} has a non-empty and bounded
class limit.

Let y be a limit point: there exists {Kxnh
}h∈N such that Kxnh

→ y and in
particular Kxnh

⇀ y.
Therefore y = Kx is the only limit point: we have that K is weak-strong
continuous, namely Kxn → Kx.

Proof of the second part:
Suppose now that K ∈ B(X,Y ) is weak-strong continuous, consider a
bounded set E ⊂ X and the sequence {yn}n∈N ⊂ KE.
Then there exists xn ∈ E such that Kxn = yn for every n ∈ N.

Using the reflexivity of X we can apply the corollary 3.3.37 on page 248 to
the BA theorem55 and find {xnh

}h∈N such that xnh
⇀ x. Hence Kxnh

→
Kx and KE is precompact. This entails K ∈ K(X,Y ). ■

We have seen that K(X,Y ) is a subspace of B(X,Y ). We are now going to
prove that K(X,Y ) is closed.

Theorem 3.3.46
The space of compact operators K(X,Y ) is a closed subspace of
B(X,Y ).
This means that K(X,Y ) is a Banach space with respect to the
induced norm.

Proof. For simplicity, we will prove the theorem when X is also reflexive.
Consider a converging sequence {Kn}n∈N ⊂ K(X,Y ), such that there exists:

K ∈ B(X,Y ) : ∥Kn −K∥B(X,Y ) → 0 as n → +∞.

We are left to prove that K is compact, namely K ∈ K(X,Y ), by showing
that it is weak-strong continuous (see the theorem stating the characteriza-
tion of the compactness 3.3.45 on the previous page).

55Remember that separability was not necessary, even though to prove it without this
assumption, we can’t take advantage of the Banach-Alaoglu theorem.
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Let {xn} such that xn ⇀ x; as {xn}n∈N is bounded there exists M > 0 such
that ∥xn∥X ≤ M , and we have:

∥Kxn −Kx∥Y ≤ ∥Kxn −Kjxn∥Y + ∥Kjxn −Kjx∥Y + ∥Kjx−Kx∥Y
≤ 2M ∥K −Kj∥B(X,Y ) + ∥Kjxn −Kjx∥Y

Let ε > 0 be fixed. Then exists j0 ∈ N such that

∥Kj −K∥B(X,Y ) <
ε

3M
∀j ≥ j0.

Therefore:

∥Kxn −Kjxn∥Y ≤ M · ∥K −Kj∥B(X,Y ) <
ε
3 ∀j ≥ j0.

Moreover, since xn ⇀ x, via lower semi-continuity we have:

∥Kjx−Kx∥Y ≤ lim inf
n

∥Kjxn −Kxn∥Y ≤ ε
3 ∀j ≥ j0.

Fix j = j0. Since Kj0 ∈ K(X,Y ), there exists n0 ∈ N such that:

∥Kj0xn −Kj0x∥Y < ε
3 ∀n ≥ n0.

Summing up:

∀ε > 0 ∃n0 = n0(ε) ∈ N : ∥Kxn −Kx∥y < ε ∀n ≥ n0

Thus Kxn
Y−→ Kx, and K is compact. ■

The approximation problem The previous theorem has an immediate con-
sequence:

Proposition 3.3.47
If we have a converging sequence of finite-rank linear operators, then
its limit is a compact operator.

The converse of this proposition is known as approximation property: is
any K ∈ K(X,Y ) the limit of a sequence of finite rank operators, with
respect to the operator norm?

In general it is not: Per Enflo proved in 1973 that there exists a Banach
space which is separable but it does not have any Schauder basis and so the
approximation property does not hold.

We know that the approximation property holds if Y has a Schauder basis
or if Y is a Hilbert spaces (see definition 3.4.5 on page 260).
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First example of compact operator We are now going to introduce a class
of linear compact operators, from Lp to Lq.
Consider (Ω,L(Ω), λ) with Ω ∈ L(RN ) and G ∈ Lq(Ω× Ω) with respect to
the Lebesgue measure in R2N for some q ∈ (1,∞).

For any u ∈ Lp(Ω), where p is the conjugate of q, set

KGu(x) =

∫
Ω
G(x, y)u(y) dy

for all u ∈ Lp(Ω) and for almost any x ∈ Ω. The function G is called kernel
of the operator KG.

Using Hölder’s inequality we have:

|KGu(x)|q ≤
(∫

Ω
|G(x, y)| |u(y)|dy

)q

≤ ∥G(x, ·)∥qq ∥u∥
q
p

for almost any x ∈ Ω. This implies that:

∥KG∥q ≤ ∥G∥q ∥u∥p ∀u ∈ Lp(Ω).

Then we deduce that KG is linear and bounded from X = Lp(Ω) and
Y = Lq(Ω).

Let {un}n∈N ⊂ Lp(Ω) be such that un ⇀ u.
Define the converging sequence:

Φn(x) = KG(un − u)(x) =

∫
Ω
G(x, y)(un − u)(y) dy → 0

for almost any x ∈ Ω. Notice that we have:

|Φn(x)|q ≤ ∥G(x, ·)∥qq ∥un − u∥qq ≤ M ∥G(x, ·)∥qq = F (x)

for almost any x ∈ Ω since {un}n∈N is bounded in Lp(Ω).

On the other hand, F ∈ L1(Ω). Therefore (see dominated convergence
theorem 2.3.2 on page 119):

∥KG(un − u)∥q → 0 as n → ∞.

Hence K is weak-strong continuous so it’s compact since Lp(Ω) is reflex-
ive.

In case of p = q = 2 we have the following definition.
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Definition 3.3.48
Let G ∈ L2(Ω× Ω), for all u ∈ Lp(Ω) the operator

KGu(x) =

∫
Ω
G(x, y)u(y) dy

is called Hilbert–Schmidt operator with kernel G.

The set of all Hilbert–Schmidt operators is a subspace of K(L2(Ω)).

Second example of compact operator Let’s set:

Xp = {f ∈ AC([a, b]) : f ′ ∈ Lp((a, b))} ⊆ AC([a, b])

where p ∈ [1,∞]. We know that Xp can be identified with some Sobolev
space

W 1,p((a, b)) := {f ∈ Lp([a, b]) : Df ∈ Lp((a, b))}

where Df is the distributional derivative, namely:∫ b

a
Dfϕ dt = −

∫ b

a
fϕ′ dt ϕ ∈ C∞

C (((a, b)).

In particular we have that AC([a, b]) can be identified with W 1
1 ((a, b)) since

each equivalence class contains one and only one continuous representa-
tive.

It’s easy to prove that W 1,p(a, b) is a Banach space with respect to the
norm:

∥f∥♠,p = |f(a)|+ ∥Df∥p
which is equivalent to

∥f∥1,p = ∥f(a)∥p + ∥Df∥p .

Consider now the identity application:

I : (W 1,p((a, b)), ∥·∥♠,p) → (C([a, b]), ∥·∥∞), If = f.

Using Ascoli–Arzelà theorem (3.1.47 on page 188) we can prove that I is
compact if p ∈ (1,∞]. Thus we have

W 1,p((a, b)) ↪→↪→ C([a, b]) ∀p > 1.
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Let {fn}n∈N ⊂ W 1,p((a, b)) be bounded by a constant M > 0. Observe
that

fn(t) = fn(a) +

∫ t

a
Dfn(r) dr t ∈ [a, b].

Then, using Hölder’s inequality, we get

|fn(t)| ≥ |fn(a)|+
∫ b

a
|Dfn(r)|dr

≥ |fn(a)|+ (b− a)
1
q ∥Dfn∥p

max{1, (b− a)
1
q } ∥fn∥♠,p

where q ∈ [1,∞) is the conjugate of p. Thus we find:

∥fn∥∞ ≤ max{1, (b− a)
1
q }M ∀n ∈ N.

Observe now that

fn(t)− fn(s) =

∫ t

s
Dfn(r) dr t, s ∈ [a, b].

Using again Hölder’s inequality we find:

|fn(t)− fn(s)| ≤ |
∫ t

s
|Dfn(r) dr|

≤ |t− s|
1
q ∥Dfn∥p

≤ M |t− s|
1
q .

Then {fn}n ∈ N is bounded and equicontinuous. Using Ascoli–Arzelà the-
orem we deduce that there exists a subsequence Ifnh

= fnh
for h ∈ N

and f ∈ C([a, b]) such that ∥fnh
− f∥∞ → 0 as h → ∞. Thus I is com-

pact.

The Fredholm alternative in Banach spaces Surjectivity and injectivity
of an operator are strongly related to the solvability of a certain equation
somehow associated to the operator itself. The following results will handle
a scenario where the operator I −K for some K compact.
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Theorem 3.3.49
Let X be a Banach space and K ∈ K(X). Then

• Ker(I −K) is finite dimensional;

• Im(I −K) is closed;

• Ker(I −K) = {0} if and only if Im(I −K) = X.

This result will be proven for Hilbert spaces (see 3.4.54 on page 297).

Corollary 3.3.50 (Fredholm’s alternative)
Let K ∈ K(x). Given y ∈ X, consider the functional equation:

x−Kx = y

Then either the equation has a unique solution for any y ∈ Y or
x−Kx = 0 has at n > 1 linearly independent solutions.

Corollary 3.3.51
Let X finite dimensional and K ∈ K(X).
Then the operator K is injective if and only if it is also surjective.

Otherwise if X is infinite-dimensional then there are linear operator which
are injective but non surjective or viceversa.

Example 3.3.52 . Consider X = l2 and x = {x1, x2, . . . , xn, . . .} ∈ X, take:

Rx = {0, x1, x2, . . . , xn, . . .}, Lx = {x2, x3, . . . , xn, . . .}.

We have that R, the right shift, is injective but not surjective while L, the
left shift, is surjective but not injective.
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3.4 Hilbert spaces

Up until now we dealt with spaces, specifically Banach spaces, which are
normed and have certain properties of convergence with respect to the norm.
Now we will bring this to a step further, and we will introduce another oper-
ation, called scalar (or inner) product. This will lead us to Hilbert Spaces,
which have very strong properties and are often a very good framework
when solving partial differential equations. We will see that R2 is a Hilbert
space, and the scalar product which we will talk about, in that space is the
well known euclidean inner product related to the notion of angle.

3.4.1 Hilbert spaces

Let’s start from the very beginning. In this section consider X as a vector
space on R.

Definition 3.4.1
An application p : X ×X → R is called scalar product in X if, for
all x, y, z ∈ X and for all α, β ∈ R the following properties hold:

• positivity:
p(x, x) ≥ 0;

• annihilation:
p(x, x) = 0 ⇐⇒ x = 0;

• symmetry:
p(x, y) = p(y, x);

• linearity on the first component:

p(αx+ βy, z) = αp(x, z) + βp(y, z).

In this case we set
⟨x, y⟩ = p(x, y).

Scalar product is known also as inner product. Observe that the first two
properties are in case of both components are with the same argument.
Moreover, thanks to symmetry property, linearity holds for both compo-
nents.

258



Definition 3.4.2
A vector space X endowed with a scalar product, namely

(H, ⟨·, ·⟩),

is called pre-Hilbert space, and their elements are called vectors.

On R2 the scalar inner product is defined: x·y = ⟨x, y⟩ := x1y1+x2y2.

This product allows us to define angles between vectors: letting a = (a1, a2), b =
(b1, b2), we geometrically have a · b = ∥a∥ ∥b∥ cos(θ). This motivates the fol-
lowing definition of angle through the scalar product:

cos(θ) =
a · b√

a · a
√
b · b

.

The following is a famous inequality we will use often from now on.

Proposition 3.4.3 (Cauchy–Schwarz or Bunakowsky inequality)
Let (H, ⟨·, ·⟩) be a pre-Hilbert space.
Then:

| ⟨x, y⟩ | ≤
√
⟨x, x⟩

√
⟨y, y⟩ ∀x, y ∈ H.

Proof. Fix two vectors x, y ∈ X and consider the non-negative function

t 7→ ⟨x+ ty, x+ ty⟩ .

Then the inequality is given by the following, valid for all t ∈ R:

⟨x+ ty, x+ ty⟩ = ⟨x, x⟩+ 2t ⟨x, y⟩+ t2 ⟨y, y⟩ ≥ 0,

the discriminant should be negative so the inequality follows. ■

Defining the Hilbert spaces It’s easy to understand that the scalar prod-
uct has same properties in common with the norm, indeed, the scalar prod-
uct of the same vector returns always a real non-negative number. Fur-
thermore, if such vector is the null vector, the scalar product is zero. Using
those properties is it possible to define a new norm from the scalar product?
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Definition 3.4.4
Let x ∈ H. We define the norm induced by the scalar product as
follows:

∥x∥ :=
√
⟨x, x⟩.

To check that ∥·∥ is actually a norm in H (see definition 3.1.10 on page 175),
we have only to check the homogeneity, which is given by the linearity
of the scalar product, and that the triangular inequality holds, namely
∥x+ y∥ ≤ ∥x∥+∥y∥, which is obtained from the Cauchy–Schwarz inequality
as follows:

∥x+ y∥2 = ⟨x, x⟩+ ⟨y, y⟩+ 2 ⟨x, y⟩ ≤ ∥x∥+ ∥y∥+
√

⟨x, x⟩
√
⟨y, y⟩.

Having this definition we can rewrite the Cauchy–Schwarz inequality as
follows:

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥ ,
where the norm is induced by the scalar product.

Now we can define the Hilbert spaces:

Definition 3.4.5
We say that a pre-Hilbert space is a Hilbert space if it is complete
with respect to the norm induced by its scalar product.

Previously we argued the concept of angle. From Cauchy–Schwarz inequal-
ity, we have:

−1 ≤ ⟨x, y⟩
∥x∥ ∥y∥

≤ 1 ∀x, y ∈ H : x, y ̸= 0.

Thus there exists a unique angle θ ∈ [0, π] such that cos(θ) = ⟨x,y⟩
∥x∥∥y∥ .

This is an abstract generalization of the concept of angle between two or
three dimensional vectors.

Notable examples of Hilbert spaces Here we present for some spaces a
definition of scalar product which make the space an Hilbert one.

• Consider the set RN : it becomes an Hilbert space when endowed with
the Euclidean scalar product :

⟨x, y⟩ =
N∑
i=1

xiyi ∀x, y ∈ RN .
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• The space L2(Ω,M, µ) is a Hilbert space with:

⟨f, g⟩ =
∫
Ω
fg dµ.

• The space l2 is a Hilbert space with:

⟨{xn}n∈N, {yn}n∈N⟩ =
∑
n∈N

xnyn.

Moreover, space of continuous functions C([0, 1]) is a pre-Hilbert space
with:

⟨f, g⟩ =
∫ 1

0
fg dx.

It is not complete with respect to the norm induced by this scalar prod-
uct.

Parallelogram identity and minimal distance The following identity is a
characterization of Hilbert spaces, as specified by the subsequent theorem.

Proposition 3.4.6 (parallelogram identity)
Let H be a pre-Hilbert space.
Then:

∥x− y∥2 + ∥x+ y∥2 = 2 ∥x∥2 + 2 ∥y∥2 ∀x, y ∈ H.

Theorem 3.4.7 (Von Neumann)
Let (X, ∥·∥) be a Banach-space.
If ∥·∥ satisfies the parallelogram identity, then ∥·∥ is induced by the
following inner product:

⟨x, y⟩ = 1

2
(∥x+ y∥2 + ∥x∥2 + ∥y∥2)

and (X, ⟨·, ·⟩) is a Hilbert space.56

56For further discussion and many more references, see: H. Brezis, Functional Analysis,
Sobolev Spaces and Partial Differential Equations, 2010, page 144, “Characterization of
Hilbert spaces”.
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The main difficulty of proving this results lays in proving that the one
presented is actually an inner product, in particular that is linear.

Notice that, via parallelogram identity, every Hilbert space is uniformly
convex and thus reflexive (see Milman-Pettis theorem 3.3.21 on page 241),
indeed since

∥x+ y∥2 = 2 ∥x∥2︸︷︷︸
≤1

+2 ∥y∥2︸︷︷︸
≤1

+
(
−∥x− y∥2

)
︸ ︷︷ ︸

<−ε2

≤ 4− ε2

then √∥∥∥∥x+ y

2

∥∥∥∥2 <
√
1− ε2

4
= 1− δ(ε)

Example 3.4.8 . Consider (C([0, 1], ∥·∥∞), this is a Banach space, but not
an Hilbert space.
Indeed, take f and g as follows:

f(x) =


4x 0 ≤ x ≤ 1

4

−4(x− 1
2)

1
4 < x ≤ 1

2

0 1
2 < x ≤ 1

g(x) =


0 0 ≤ x ≤ 1

2

4(x− 1
2)

1
2 < x ≥ 3

4

−4(x− 1) 3
4 < x ≥ 1

Then ∥f − g∥∞ = 1 = ∥f + g∥∞, and ∥f∥∞ = ∥g∥∞ = 1: the parallelogram
identity does not hold.

The following theorem is a fundamental brick for the next development of
the theory. First let’s define a simple concept, the theorem will characterize
it.

Definition 3.4.9
Let X be a normed vector space and V ⊂ X one of his closed non-
empty subsets.
For any x ∈ X the minimal distance of V from x is:

d(x, V ) = inf
v∈V

∥x− v∥ .

This definition is very simple, the distance between a set and an element is
the distance of the element from the closest element belonging to the set.
Observe that the distance of a set from one of his point is zero.
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Theorem 3.4.10 (minimal distance)
Let (H, ⟨·, ·⟩) be a Hilbert space, and V ⊂ H be a closed non-empty
subspace.
Then for any x ∈ H there exists a unique v̄ ∈ V such that:

d(x, V ) = ∥x− v̄∥ .

Proof. We have to prove that v̄ exists unique such that:

inf
v∈V

∥x− v∥ = ∥x− v̄∥ .

Take a point x ∈ H. We are looking for an element which realize the
inferior.

Existence:
Consider a sequence {vn}n∈N ⊂ V such that:

limn → ∞∥x− vn∥ = d(x, V ).

Suppose m > n and observe that vn+vm
2 ∈ V due to vector space structure.

Therefore: ∥∥∥∥x− vn + vm
2

∥∥∥∥ ≥ d(x, V )

which implies
∥2x− (vm + vn)∥ ≥ d(x, V )

and then
−∥2x− (vm + vn)∥2 ≤ −4d(x, V )2.

Now we use this result as follows:

∥vm − vn∥2 = ∥vm − x+ x− vn∥2

= 2(∥x− vm∥2 + ∥x− vn∥2)− ∥2x− (vm + vn)∥2

≤ 2(∥x− vn∥︸ ︷︷ ︸
→ d

2 + ∥x+ vm∥︸ ︷︷ ︸
→ d

2)− 4d2

→ 0

as m,n → +∞. Observe that in the second equality the parallelogram
identity has been used in the form ∥a+ b∥2 = 2 ∥a∥2 + 2 ∥b∥2 − ∥a− b∥2,
where a = x− vm and b = x− vn.
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Therefore {vn}n∈N ⊂ V is a Cauchy sequence and it converges to a v̄ ∈ V ,
as V is closed by hypothesis.

By the continuity of the norm we have that the inferior is reached, namely:

∥x− v⋆∥ = d(x, V ).

Uniqueness:
Finally we have to prove that v̄ is unique; suppose we have ∥x− v̄1∥ =
d(x, V ) and ∥x− v̄2∥ = d(x, V ).
Using the parallelogram identity again we have:

∥v̄1 − v̄2∥2 = ∥v̄1 − x+ x− v̄2∥2 = 4d2 − ∥2x− v̄1 + v̄2∥2 ≤ 0

and thus v̄1 = v̄2. ■

This theorem holds even if V is a convex, closed, non-empty subset of H.
A space V is convex if for all u, v ∈ V , for any λ ∈ [0, 1] we have:

(1− λ)u+ λv ∈ V.

The proof argues exactly in the same way, with the only difference when we
state that vn+vm

2 ∈ V . In fact, in the original proof, this holds because we
assume V is a subspace, but in reality convexity is enough since if vn, vm ∈ V
then choosing λ = 1

2 we still obtain 1
2vn + (1− 1

2)vm = vn+vm
2 ∈ V .

3.4.2 Orthogonality and projection

In this chapter we will explain the orthogonality in the context of Hilbert
spaces and begin the discussion on projection on subspaces.

General definition As we know from geometry, also in this context we can
define orthogonality and orthonormality. In addiction, here we see how to
characterize the Hilbert spaces.

Definition 3.4.11
We say that x and y are orthogonal if

⟨x, y⟩ = 0;

in such case we write x ⊥ y.
Moreover, if x ⊥ y and ∥x∥ = ∥y∥ = 1, then we say that x and y
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are orthonormal.

Proposition 3.4.12 (Pythagoras’ theorem)
Let x, y ∈ H, x, y ̸= 0.
If x ⊥ y, then:

∥x± y∥2 = ∥x∥2 + ∥y∥2 .

Proof. Consider: ∥x+ y∥2 = ∥x∥2 + 2 ⟨x, y⟩+ ∥y∥2 = ∥x∥2 + ∥y∥2.
Same in the case of minus. ■

Extending to set This notion can be extended from points to sets:

Definition 3.4.13
Let (H, ⟨·, ·⟩) be a Hilbert space, and V ⊂ H.
Then we define the orthogonal set of V as follows:

V ⊥ := {x ∈ H : ⟨x, v⟩ = 0, ∀v ∈ V }.

Proposition 3.4.14
The set V ⊥ is always a closed subspace of V .
Moreover, we have:

sV ⊥ = V ⊥ and �(spanV )⊥ = V ⊥.

The proof is easy and left as an exercise to the reader.

Definition 3.4.15
Let (H, ⟨·, ·⟩) be a Hilbert space, and V,W ⊂ H be subspaces.
We say that V and W are orthogonal subspaces, and we write
V ⊥ W , if:

V = W⊥ and W = V ⊥

that means:
v ⊥ w ∀v ∈ V,w ∈ W.

In this case we set the subspace direct sum of V and W as follows:

V ⊕W := {v + w : v ∈ V,w ∈ W}.
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Proposition 3.4.16
If V ⊥ W , then V ∩W = {0}, and any element x ∈ V ⊕W has a
unique representation as v + w.

Projections These definitions concludes our introduction to orthogonality.
Now we see this notion in action.

Theorem 3.4.17 (projection theorem)
Let (H, ⟨·, ·⟩) be a Hilbert space, and V ⊂ H be a closed subspace.
Then we can write H as:

H = V ⊕ V ⊥.

This is also called orthogonal decomposition of H.

Observe that, on account of this theorem, if V is a subspace of H, then:

(V ⊥)⊥ = sV.

Indeed, we have:

V ⊥ closed =⇒ H = V ⊥ ⊕ (V ⊥)⊥ = (V ⊥)⊥ ⊕ V ⊥,

sV closed =⇒ H = sV ⊕ (sV )⊥ = sV ⊕ V ⊥.

Note also that V ⊥ = {0} if and only if sV = H.
This is because V ⊥ = {0} so that (V ⊥)⊥ = H and sV = H.
Viceversa, from sV = H we find V ⊥ = (V ⊥)⊥ = {0}. To sum up, we say
that V is dense in H if and only if V ⊥ = {0}.

Proof. Let x ∈ H. Due to minimal distance theorem 3.4.10 on page 263,
supposing V non-empty, there exists a unique v ∈ V such that d(x, V ) =
∥x− v∥.

Set now w := x − v and choose λ ̸= 0 such that for any u ∈ V we have
λ ⟨w, u⟩ ≥ 0.
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Figure 3.1: Geometric intuition behind the proof of the projection theorem.

Then we have:

inf
y∈V

∥x− y∥2 = ∥w∥2

≤

∥∥∥∥∥∥x− (v + λu)︸ ︷︷ ︸
∈V

∥∥∥∥∥∥
2

= ∥w − λu∥2

= ∥w∥2 − 2λ ⟨w, u⟩+ λ2 ∥u∥2 .

Then we have −2λ ⟨w, u⟩ + λ2 ∥u∥2 ≥ 0, thus λ2 ∥u∥2 ≥ 2λ ⟨w, n⟩ which
implies

| ⟨w, u⟩ | < |λ|
2

∥u∥2 .

Letting λ go to zero, we get:

⟨w, n⟩ = 0 ∀u ∈ V.

Thus we have proven that x = v + w where w ∈ W = V ⊥.
We are left to prove that V = W⊥ so that H = V ⊕ V ⊥.
Observe that V ⊂ W⊥.
On the other hand if x ∈ W⊥ then:

x = u⋆ + w⋆, u⋆ ∈ V,w⋆ ∈ W.

Thus x− u⋆ ∈ W ∩W⊥ = {0} and this gives x = u⋆ so that x ∈ V . ■

On account of this theorem we can give the following definition.
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Definition 3.4.18 (orthogonal projectors)
Let (H, ⟨·, ·⟩) be a Hilbert space, and V ⊂ H be a closed subspace.
Let also v the unique element of V such that ∥x− v∥ = d(x, V ).
Define the following projector of H onto V :

PV : H → V PV x = v.

In the same way we can define the projector of H onto V ⊥:

PV ⊥ : H → V ⊥ PV ⊥x = x− v = x− PV x.

Notice that x = PV x+ PV ⊥x.

PV is linear and bounded, namely:

PV ∈ B(H,H).

• boundedness is easy:

∥x∥2 = ∥PV x∥2 + ∥PV ⊥x∥2 =⇒ ∥PV x∥ ≤ ∥x∥

• linearity is a bit harder:

αx− PV (αx) ∈ V ⊥

αx− αPV (x) ∈ V ⊥

}
=⇒ ��αx− PV (αx)− [��αx− αPV (x)] ∈ V ⊥

but also
αPV (x)︸ ︷︷ ︸

∈V

−PV (αx)︸ ︷︷ ︸
∈V

∈ V

thus

αPV (x)− PV (αx) ∈ V ⊥ ∩ V = {0} =⇒ αPV (x) = PV (αx)

A similar argument can be done to prove that PV (x)+PV (y) = PV (x+
y).

3.4.3 Dual of a Hilbert Space and Riesz’s representation theoremaccorpare
al prece-
dente?

In this chapter we will introduce a theorem which play an important role
in application.
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Start with an observation. Consider a Hilbert Space, namely (H, ⟨·, ·⟩) and
fix one of his elements y ∈ H. Define the operator Ly as follows:

|Lyx| = | ⟨y, x⟩ | ∀x ∈ H.

Then this operator belongs to the dual of H and we will write Ly ∈ H. As
|Lyx| = | ⟨y, x⟩ | ≤ ∥y∥ ∥x∥, we have that ∥Ly∥H⋆ ≤ ∥y∥: with the fact that
H is reflexive this implies that ∥Ly∥⋆ = ∥y∥.
Now we have to acknowledge that there exists an isometry J : H →
H⋆, y 7→ Ly = ⟨x, y⟩.

This reasoning can be revert: the converse is also true and we have

Theorem 3.4.19 (Riesz’s representation theorem)
Let (H, ⟨·, ·⟩) be a Hilbert space.
An operator L ∈ H⋆ if and only if there exists a unique y ∈ H such
that Lx = ⟨y, x⟩ for all x ∈ H.

In other words, J : H → H⋆ is surjective.

Observe that the reflexivity of H can be proven using this theorem.
Note also that as n → ∞ we have

⟨xn, y⟩ → ⟨x, y⟩ ∀y ∈ H if and only if xn ⇀ x.

We will prove the “only if” part as the “if” part can be deduced from the
introduction. a better

organi-
zation is
more suit-
able for a
book

Proof. Proof of the necessary condition ⇐= .
If L ≡ 0, then we choose y = 0 and the thesis is obtained.
General case.
Consider L ̸≡ 0. Then Ker(L) is a closed proper subspace of H, that is
{0} ⊊ Ker(L)⊥.
Then, applying the projection theorem and then normalizing, we can find
z ∈ Ker(L)⊥ such that ∥z∥ = 1; then for any x ∈ H since:

L

(
x− Lx

Lz
z

)
= Lx− Lx

Lz
Lz = 0,

we have
x− Lx

Lz
z ∈ Ker(L).
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Thus: 〈
x− Lx

Lz
z, z

〉
= 0,

which implies

⟨x, z⟩ =
〈
Lx

Lz
z, z

〉
=

Lx

Lz
and Lx = ⟨x, (Lz)z⟩ ∀x ∈ H.

We choose y = (Lz)z ∈ Y .

The element y is unique.
If Lx = ⟨y1, x⟩ = ⟨y2, x⟩ for all x ∈ H, then ⟨y1 − y2, x⟩ = 0 ∀x ∈ H.
Choosing x = y1 − y2, we have ∥y1 − y2∥2 = 0, and finally y1 = y2. ■

We can say that H and H⋆ is linearly and isometrically isomorphic, through
the linear isometry and isomorphism we introduced before J . This isomor-
phism is called Riesz map. It can be defined also as J : H⋆ → H by
setting

JL = y where Lx = ⟨x, JL⟩ ∀x ∈ H.

As it is a linear bijection and an isometric isomorphism we have ∥JL∥ =
∥L∥⋆.

Proposition 3.4.20
Consider the following inner product on H⋆:

⟨L1, L2⟩⋆ :=
〈
J−1L1, J

−1L2

〉
∀L1, L2 ∈ H⋆.

Then (H⋆, ⟨·, ·⟩⋆) is a Hilbert space.

The induced norm is the existing norm in H⋆:

⟨L1, L2⟩⋆ = ∥JL1∥2 = ∥L1∥2⋆

because ∥L1∥⋆ =
√
⟨L1, L1⟩⋆ =

√
⟨J−1L1, J−1L2⟩ =

∥∥J−1L1

∥∥ = ∥L1∥H⋆ .

Taking advantage of the Riesz’s representation theorem you can prove that
any Hilbert space is reflexive: this is a really though exercise.
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3.4.4 Proof of the Radon–Nikodym Theorem

The theorem is named after Johann Radon, who proved the theorem for
the special case where the underlying space is RN in 1913, and after Otto
Nikodym who proved the general case in 1930. It is a representation the-
orem: it provides, under suitable assumptions, a link between two mea-
sures.

The theorem is explained in 2.2.3 on page 114, for a better use of this book
we copy-pasted it here.

Theorem 3.4.21 (Radon–Nikodym)
Let (Ω,M, µ) be a complete measure space, and ν, µ two measures
on (Ω,M).
If µ is σ-finite and ν ≪ µ, then the Radon–Nikodym derivative dν

dµ
exists.

This proof belongs to John von Neumann (1903–1957).

Proof. Set up:
For simplicity we consider the w Consider µ, ν finite, namely µ(Ω), ν(Ω) <
∞), such that ν ≪ µ.
Let λ = µ+ ν. Then, for every non-negative and measurable function f we
have the additivity with respect to measure:∫

Ω
fdλ =

∫
Ω
fdµ+

∫
Ω
fdν

which is a direct consequence of the definition of Lebesgue interval.

First step, use of the Hölder inequality and the Riesz’s representation theo-
rem:
Suppose f ∈ L2

λ(Ω). Applying the Hölder inequality we have:∣∣∣∣∫
Ω
f dν

∣∣∣∣ ≤ ∫
Ω
|f |dν

≤
∫
Ω
|f |dλ

≤
(∫

Ω
|f |2 dλ

) 1
2

(λ(Ω))
1
2

= ∥f∥L2
λ(Ω) (λ(Ω))

1
2
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< +∞.

Thus F : f 7→
∫
Ω fdν is a linear bounded functional on L2

λ(Ω), from which
we deduce:

∥F∥(L2
λ(Ω))⋆ ≤ (λ(Ω))

1
2 .

Applying Riesz’s representation theorem (3.4.19 on page 269) there exists
g ∈ L2

λ(Ω) such that:

F (f) =

∫
Ω
f dν =

∫
Ω
fg dλ ∀f ∈ L2

λ(Ω).

For any E ∈ M such that λ(E) > 0, consider f = 1E ; we have:

0 ≤ ν(E) =

∫
Ω
f dν =

∫
Ω
fg dλ =

∫
E
g dλ = F (1E) ≤ λ(E).

So ν(E) ≤ λ(E) and then:

0 ≤ 1

λ(E)

∫
E
g dx ≤ 1.

Second step:
As E is arbitrary we have 0 ≤ g(x) ≤ 1 almost everywhere with respect to
the measure λ, and thus with respect to ν and µ.
We can suppose that there exists Ω̃ ∈ M such that 0 ≤ g(x) ≤ 1 for any
x ∈ Ω̃.
So λ(Ω̃C) = 0, and we define g(x) = 1 for all x ∈ Ω̃C.

Then, for any f ∈ L2
λ(Ω):∫

Ω
f dν =

∫
Ω
fg dλ =

∫
Ω
fg dµ+

∫
Ω
fg dν

and we can rewrite in this way:∫
Ω
(1− g)f dν =

∫
Ω
fg dµ.

Third step, convergences:
Let A = {x ∈ Ω : 0 ≤ g(x) < 1}, and B = AC.
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Taking f = 1B in the previous identity we find µ(B) = 0.
By hypothesis ν ≪ µ, and thus ν(B) = 0.

Define

Φn =

n+1∑
j=0

gj .

Take now f = (1 + g + g2 + · · ·+ gn)1E in the same identity, with E ∈ M,
n ∈ N. We get: ∫

E
(1− gn−1) dν =

∫
E
Φn dµ.

Observe that as n → +∞ and 0 ≤ 1− gn+1 ≤ 1 in Ω we have 1− gn+1 → 1
almost everywhere with respect to ν and, due to ν(B) = 0:∫
E
(1−gn−1) dν =

∫
E∩A

(1−gn−1) dν+

∫
E∩B

(1− gn−1) dν︸ ︷︷ ︸
=0 ∀n

→ ν(E∩A) = ν(E).

First, applying dominate convergence theorem which entails:

lim
n→∞

∫
E
(1 + gn+1) dν = ν(E).

Second, as Φn ↑ Φ monotonically and Φ = limnΦn is measurable, we can
use monotone convergence theorem and obtain:∫

E
Φndµ →

∫
E
Φdµ.

Thus we can conclude deducing:

ν(E) =

∫
E
Φdµ ∀E ∈ M.

Note also that Φ is measurable and belongs to L1
µ(Ω) as ν and µ are finite.

■
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3.4.5 Bilinear Forms and Lax Milgram lemma

Here we will generalize the concept of inner product. In fact, the following
definition will make it clear that the inner product is an operation which
belongs to a much general class.

Definition 3.4.22
Let (H, ⟨·, ·⟩) be a Hilbert space.
An application a : H ×H → R is called bilinear form if:

u 7→ a(u, v) is linear for each fixed v ∈ H,

v 7→ a(u, v) is linear for each fixed u ∈ H.

Definition 3.4.23
A bilinear form a : H × H → R is coercive if there exists α > 0
such that:

a(u, u) ≥ α ∥u∥2 ∀u ∈ H.

Proposition 3.4.24
A bilinear form a : H × H → R is continuous if and only if there
exists M > 0 such that:

|a(u, v)| ≤ M ∥u∥ ∥v∥ ∀u, v ∈ H.

Observe that the inner product of an Hilbert space is a continuous and
coercive bilinear form.

Consider H = RN with the euclidean scalar product ⟨·, ·⟩2 and a matrix
A ∈ RN×N . Then a(x, y) = ⟨Ax, y⟩2 for all x, y ∈ RN is a continuous
bilinear form.

The following is a lemma which generalize the last representation theo-
rem.

Theorem 3.4.25 (Lax–Milgram)
Let a : H ×H → R be a continuous and coercive bilinear form.
Then for any l ∈ H⋆ there exists a unique u ∈ H such that:

a(u, v) = Lv ∀v ∈ H.
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Moreover we have
∥u∥ ≤ 1

α
∥L∥⋆

where α is the coercivity constant.

Proof. Fix u ∈ H and observe that:

v ∈ H : v 7→ a(u, v) ∈ R

is an element of H⋆. Therefore there is a unique h ∈ H such that:

a(u, v) = ⟨h, v⟩ ∀v ∈ H.

Thus we can define a linear operator A : H → H by setting Au = h. This
operator is also bounded. Indeed:

∥Au∥2 = ⟨Au,Au⟩ = a(u,Au) ≤ M ∥u∥ ∥Au∥

so that ∥Au∥ ≤ M ∥u∥.

Moreover, we have:

α ∥u∥2 ≤ a(u, u) = ⟨Au, u⟩ ≤ ∥Au∥ ∥u∥

so A is also injective.

On the other hand, there is a unique w ∈ H such that (see Riesz’s repre-
sentation theorem 3.4.19 on page 269):

Lv = ⟨w, v⟩ ∀v ∈ V.

Therefore the thesis can be reformulated as follows: for any w ∈ H find a
unique u ∈ H such that:

⟨Au, v⟩ = ⟨w, v⟩ ∀v ∈ V

so we’re left to show that A is surjective.

Let’s prove first that Im(A) is a closed subspace of H.
Indeed let {yn}n∈N ⊂ Im(A) be such that yn → y as n → ∞.
We know that there exists a unique un ∈ H such that Aun = yn.
Moreover, we have

α ∥un − um∥ ≤ ∥Aun −Aum∥ = ∥yn − ym∥
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therefore {un}n∈N converges in H to some u and, because A is continuous,
it follows

Aun → Au n → ∞.

Hence y = Au ∈ Im(A) and Im(A) is closed.

We can now prove that A is surjective.
By contradiction suppose that Im(A) ⊊ H. Then there exists y0 ∈ H such
that y0 ̸= 0 and y0 ∈ Im(A)⊥. However, we have

0 = ⟨Ay0, y0⟩ = a(y0, y0) ≥ α ∥y0∥2 =⇒ y0 = 0.

This is a contradiction.

Finally, we recall that

α ∥u∥ ≤ ∥Au∥ = ∥w∥ = ∥L∥⋆ .

■

Inner product Even if a scalar product is a continuous and coercive bilin-
ear form, a continuous and coercive bilinear form is not necessarily a scalar
product: this because it might be not symmetric.
Due to this point, the Lax–Milgram lemma can be seen as a generalization
of the Riesz representation theorem (3.4.17 on page 266).

Proposition 3.4.26
Let a : H ×H → R be a continuous and coercive bilinear form.
If a is symmetric, namely:

a(u, v) = a(v, u) ∀u, v ∈ H.

then a is a scalar product in H and its induced norm is equivalent
to the norm in H.

Proof. By coercivity and the other hypothesis we have:

α ∥u∥2 ≤ a(u, u) ≤ M ∥u∥2 ∀u ∈ H

where ∥·∥ is the norm in H.

Hence a(u, u) ≥ 0 for all u ∈ H and a(u, u) = 0 if and only if u = 0.
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Thus a(·, ·) is a scalar product in H and its induced norm

∥u∥a =
√

a(u, u)

is equivalent to ∥·∥. ■

An application of the Lax–Milgram lemma All this theory has a practical
purpose. Here we will see in action the tools we built solving a differential
problem.
Consider the following boundary value problem: find u such that{

−(α(x)u′ + β(x)u)′ + γ(x)u = f(x) x ∈ (a, b)

u(a) = u(b) = 0

where α, β ∈ C1([a, b]) and γ, f ∈ C([a, b]).

Suppose w ∈ C2([a, b]) is a classical solution to the problem.

Consider ϕ ∈ C∞((a, b)) multiply the equation by ϕ and integrate over (a, b).
Integrating by parts we get the identity:∫ b

a

[(
α(x)w′(x) + β(x)w(x)

)
ϕ′(x) + γ(x)w(x)ϕ(x)

]
dx =

∫ b

a
f(x)ϕ(x) dx.

Setting
V0 = {v ∈ H1((a, b)) : v(a) = v(b) = 0}

where H1((a, b)) = W 1,2((a, b)), we observe that V0 is a closed subspace of
H1((a, b)). Moreover the scalar product

(v1, v2) =

∫ b

a
v′1(x)v

′
2(x) dx

induces a norm
∥v∥0 =

∥∥v′∥∥
2

which is equivalent to the standard norm in H1((a, b)).
(This because the Poincaré’s inequality ∥v∥2 ≤ (b− a) ∥v′∥2.)

We can prove that C∞
C ((a, b)) is dense in V0 (this is a density theorem: den-

sity theorems allow to establish approximations) which allows us to deduce
that our solution w satisfies the identity∫ b

a
[(α(x)w′(x)+β(x)w(x))v′(x)+γ(x)w(x)v(x)] dx =

∫ b

a
f(x)v(x) dx ∀v ∈ V0.
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We can now look at our problem from a more general standpoint.

Let us set, for all u, v ∈ V0

a(u, v) =

∫ b

a
[(α(x)u′(x) + β(x)u(x))v′(x) + γ(x)u(x)v(x)] dx

and observe that a : V0 × V0 → R is a bilinear form.

Thus we can give to the original problem a weaker formulation, namely find
w ∈ V0 such that

a(w, v) = Lv ∀v ∈ V0

where L ∈ V ⋆
0 is defined by

Lv =

∫ b

a
f(x)v(x) dx ∀v ∈ V0.

Now we want to apply Lax–Milgram lemma. Let’s check the hypothe-
sis.

Observe that a(·, ·) is continuous as

|a(u, v)| ≤
∫ b

a

∣∣(α(x)u′(x) + β(x)u(x))v′(x) + γ(x)u(x)v(x)
∣∣ dx

≤ ∥α∥∞
∫ b

a

∣∣u′v′∣∣ dx+ ∥β∥∞
∫ b

a

∣∣uv′∣∣ dx+ ∥γ∥∞
∫ b

a
|uv| dx

≤ ∥α∥∞
∥∥u′∥∥

2

∥∥v′∥∥
2
+ ∥β∥∞ ∥u∥2

∥∥v′∥∥
2
+ ∥γ∥∞ ∥u∥2 ∥v∥2

for all u, v ∈ V0.
Then, using again the Poincaré’s inequality we have:

|a(u, v)| ≤ ∥α∥∞
∥∥u′∥∥

2

∥∥v′∥∥
2
+(b−a) ∥β∥∞

∥∥u′∥∥
2

∥∥v′∥∥
2
+(b−a)2 ∥γ∥∞

∥∥u′∥∥
2

∥∥v′∥∥
2
.

Hence, setting

M = ∥α∥∞ + (b− a) ∥β∥∞ + (b− a)2 ∥γ∥∞ ,

we have
|a(u, b)| ≤ M ∥u∥0 ∥v∥0 ∀u, v ∈ V0.
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We can add other assumption to the coefficients α, β and γ that hold for
any x ∈ [a, b], like the following:

α0 = min
x∈[a,b]

α(x) > (b− a) ∥b∥∞ and γ(x) ≥ 0.

Collecting the results we obtained we have:

a(u, u) =

∫ b

a
α(x)(u′(x))2 dx+

∫ b

a
β(x)u(x)u′(x) dx+

∫ b

a
γ(x)(u(x))2 dx

≥ α0

∥∥u′∥∥
2
+

∫ b

a
β(x)u(x)u′(x) dx.

We can find an upper bound for the middle term as well:∣∣∣∣∫ b

a
β(x)u(x)u′(x) dx

∣∣∣∣ ≤ ∥β∥∞ ∥u∥2
∥∥u′∥∥

2
≤ (b− a) ∥β∥∞

∥∥u′∥∥2
2
,

so we get:
a(u, u) ≥ [α0 − (b− a) ∥β∥∞]

∥∥u′∥∥
2

we can set:
α = [α0 − (b− a) ∥β∥∞] > 0.

Then, finally we have:
a(u, u) ≥ α ∥u∥0 .

and we can conclude that a(·, ·) is coercive.

Now we can apply the Lax–Milgram lemma and we deduce the following
proposition: If α, β, γ, f ∈ C([a, b]) and

min
x∈[a,b]

α(x) > (b− a) ∥b∥∞ and γ(x) ≥ 0 ∀x ∈ [a, b]

then there exists a unique u ∈ V0 such that:

a(u, v) = Lv ∀v ∈ V0.

The solution u given by the Lax–Milgram lemma is a weak solution to the
original boundary value problem.
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We can further weaken the assumptions on the coefficients by taking α, β,
γ ∈ L∞((a, b)).

In addiction f can be taken in V ⋆
o : assume f ∈ L2((a, b)) or even a linear

bounded functional link, for instance,

Lv = v(x0) ∀v ∈ V0

where x0 ∈ (a, b). It’s easy to check that L ∈ V ⋆
0 .

Consider now the linear application K : L2((a, b)) → L2((a, b)) defined by
K : f 7→ u where u satisfies

a(u, v) =

∫ b

a
fv ∀v ∈ V0.

We have that Im(K) ⊆ V0 and we know that

V0 ↪→↪→ C([a, b]) ↪→ L2((a, b)).

Therefore
V0 ↪→↪→ L2((a, b)).

Hence K is a compact operator.

From Lax–Milgram we have also a stability estimate:

∥u∥0 ≤
1

α
∥L∥V ⋆

0
.

If f ∈ L2((a, b)) then, using Poincaré’s inequality:

|Lv| =
∣∣∣∣∫ b

a
fv dx

∣∣∣∣ ≤ ∥f∥2 ∥v∥2 ≤ (b− a) ∥f∥2 ∥v∥0

so that
∥L∥⋆ ≤ (b− a) ∥f∥2

and
∥u∥0 ≤

(b− a)

α
∥f∥2 .

If
Lv = v(x0) ∀v ∈ V0
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where x0 ∈ (a, b), then, using Hölder’s inequality:

|Lv| = |v(x0)| =
∣∣∣∣∫ x0

a
v′(y) dy

∣∣∣∣ ≤ (b− a)(
1
2
) ∥v∥0

so that
∥L∥⋆ ≤ (b− a)

1
2

and

∥u∥0 ≤
(b− a)

1
2

α
.

The bilinear form a(·, ·) is not symmetric because of β.
If β ≡ 0 then we deal with following boundary value problem{

−(α(x)u′)′ + γ(x)u = f(x) x ∈ (a, b)

u(a) = u(b) = 0

and its weak formulation has a unique solution provided that, for instance

α = min
x∈[a,b]

α(x) > 0, γ(x) ≥ 0 x ∈ [a, b].

However, in this case we can just apply the Riesz representation theorem
since a(·, ·) is an inner product in V0 whose induced norm is equivalent to
∥·∥0.

3.4.6 Bases in Hilbert spaces

In this section we will see that elements of Hilbert spaces can be represented
with respect to a series of vectors, known as basis. The idea is the same
of Linear Algebra, but now we are dealing with infinite dimensional spaces,
thus things require a higher level of technicality and not every operation
can be done without some specific assumptions.

Definition 3.4.27
Let (H, ⟨·, ·⟩) be a Hilbert spaces.
A set of orthogonal vectors E ⊂ H is complete if, given a vector
x ∈ H such that ⟨x, u⟩ = 0 for all u ∈ E, then x = 0.

A subset is an orthogonal basis if E consists of orthogonal vectors
and is complete.
An orthonormal basis whose vectors have unitary norm (an then
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consists of orthonormal vectors) is an orthonormal basis.

If E is an orthonormal basis of H then �spanE⊥ = E⊥ = {0}. Thus �spanE =
H.
One can prove that, if H is separable, a countable orthogonal basis is a
Schauder basis.

Theorem 3.4.28
If a Hilbert space contains at least two distinct vectors, then it has
an orthonormal basis.

We are going to prove the theorem in a constructive way, using Gram–
Schmidt orthogonalization, supposing H separable.
If H is non-separable,57 then the proof requires Zorn’s Lemma.

Proof. Let {vn}n∈N ⊂ H be a dense set.
Set

Fh = ⟨v1, . . . , vh⟩ ∀h ∈ N0.

Observe that for all h ∈ N0, Fh is a closed subspace of H and Fh ⊂ Fh−1.

Take v1 ∈ V1 and set
e1 =

v1
∥v1∥

.

In V2 ⊋ V1, thanks to the projection theorem, we can find e2 ∈ V ⊥
1 such

that ∥e2∥ = 1.
Therefore {e1, e2} is an orthonormal basis in V2.
Then we proceed by induction, getting an orthonormal basis of H. ■

Theorem 3.4.29
All the orthonormal basis in a Hilbert space have the same cardi-
nality.

Definition 3.4.30
The cardinality of an orthonormal basis of an Hilbert space (H, ⟨·, ·⟩)
is called orthogonal dimension of H, and is denoted by dim⊥H.

If H is also separable, then dim⊥H ≤ ℵ0. Indeed, if u, v ∈ D, u ̸= v, then
∥u− v∥2 = ∥u∥2 + ∥v∥2 = 2 > 0. So if dim⊥H ≤ ℵ0 we cannot find a
countable dense set.

57“Non-separable Hilbert spaces are quite exotic.” - M. G.
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Example 3.4.31 . Let H = l2, with ⟨x, y⟩ =
∑

i∈N xiyi.
Define the set of sequences {ej}j∈N as follows:

eji =

{
1 if i = j

0 if i ̸= j.

Then {ej}j∈N is an orthonormal basis of l2 and we have:

x =
∑
j∈N

xje
j ∀x = {xn}n∈N ∈ l2.

Example 3.4.32 . If H = L2((−π, π)) then we can prove that{
1√
2π

,
sin(nt)√

π
,
cos(nt)√

π

}
n∈N0

is an orthonormal basis in H.

Fourier basis Now we will use the tools we developed to introduce the
Fourier series, which allows to represent continuous function in a different
way. In particular, Fourier series is a very powerful tool in engineering since
it helps breaking down almost any kind of function in a sum of smooth
pieces, which are much easier to treat. This is also very useful when solving
partial differential equations for the same reason.

Theorem 3.4.33 (Bessel’s inequality)
Let {un}n∈N be a set of orthonormal vectors in H.
Then, for all x ∈ H, we have∑

n∈N
| ⟨x, un⟩ |2 ≤ ∥x∥2

Proof. The absolute value is only really needed when the field is C, while in
this treaty we only used R. We will however provide a complete proof for
the sake of understanding where each term comes from. The reader may
revise some concepts, like conjugate in complex numbers, before reading the
proof.

0 ≤

∥∥∥∥∥x−
k∑

n=0

⟨x, un⟩un

∥∥∥∥∥
2
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=

〈
x−

k∑
n=0

⟨x, un⟩un, x−
k∑

n=0

⟨x, un⟩un

〉

= ⟨x, x⟩ − 2

〈
x,

k∑
n=0

⟨x, un⟩un

〉
︸ ︷︷ ︸

(∗)

+

〈
k∑

n=0

⟨x, un⟩un,
k∑

n=0

⟨x, un⟩un

〉
︸ ︷︷ ︸

(∗∗)

= (∗ ∗ ∗)

The second term becomes

(∗) =
k∑

n=0

⟨x, ⟨x, un⟩un⟩ (sesquilinearity)

=
k∑

n=0

⟨⟨x, un⟩x, un⟩ =
k∑

n=0

⟨x, un⟩ ⟨x, un⟩ (conjugate symmetry)

=
k∑

n=0

⟨un, x⟩ ⟨x, un⟩ (conjugate)

=

k∑
n=0

| ⟨x, un⟩ |2 (conjugate product)

While the third

(∗∗) =

∥∥∥∥∥
k∑

n=0

⟨x, un⟩un

∥∥∥∥∥
2

≤
k∑

n=0

| ⟨x, un⟩ |2 ∥un∥2︸ ︷︷ ︸
=1

Thus

(∗ ∗ ∗) ≤ ∥x∥2 −
k∑

n=0

| ⟨x, un⟩ |2

Letting k to infinity we get the thesis. ■

Definition 3.4.34
Let (H, ⟨·, ·⟩) be a separable Hilbert space and {un}n∈N one of its
orthonormal basis.
We define the Fourier coefficients of x ∈ H with respect to {un}n∈N
as follows:

xn := ⟨x, un⟩ .
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Theorem 3.4.35
Let (H, ⟨·, ·⟩) be a separable Hilbert space and {un}n∈N one of its
orthonormal basis.
Then we can express any x ∈ H with the following series:

x =
∑
n∈N

⟨x, vn⟩ vn.

The series is known as Fourier series.

Observe that we can also write:

x =
∑
n∈N

xnun ∀x ∈ H and ⟨x, y⟩ =
∑
n∈N

xnyn ∀x, y ∈ H.

Proof. Observe that thanks to Bessel’s inequality,
∑

n∈N | ⟨x, vn⟩ |2 =
∑

n∈N |xn|
2

converges.
Then the sequence of partial sums Sn =

∑n
j=0 xjvj is fundamental:

Sn − Sm =

∥∥∥∥∥∥
n∑

j=m+1

⟨x, vj⟩ vj

∥∥∥∥∥∥
2

≤
n∑

j=m+1

| ⟨x, vj⟩ |2 → 0 as n → ∞.

Hence
∑

n∈N xn converges in H to some x̃.
Fix m ∈ N for any n > m we have:〈

x−
n∑

j=0

xjvj , vm

〉
= xm −

〈
n∑

j=0

xjvj , vm

〉
= xm − xm = 0.

Taking n → +∞, we have ⟨x− x̃, vm⟩ = 0 for all m ∈ N, and finally x = x̃
because {un}n∈N is complete. ■

Theorem 3.4.36 (Parseval identity)
Let (H, ⟨·, ·⟩) be a separable Hilbert space and {un}n∈N one of its
orthonormal basis.
Then we can write the inner product as the series of the products
of the Fourier coefficients, namely:

⟨x, y⟩ =
∑
n∈N

⟨x, vn⟩ ⟨y, vn⟩ ∀x, y ∈ H.

285



This is known as Parseval identity.

Proof. Thanks to orthonormality, for any n ∈ N fixed, we have:〈
n∑

j=1

xjvi,
n∑

j=1

xjvi

〉
=

n∑
j=0

⟨x, vj⟩ ⟨y, vj⟩

Letting n → +∞, the first term converges to ⟨x, y⟩ since the scalar product
is continuous in H ×H.
The second term is also an inner product in l2, being continuous converges
to
∑

n∈N xnyn.
We got the thesis. ■

From the previous two results we have the following:

Corollary 3.4.37
Let (H, ⟨·, ·⟩) be a separable Hilbert space.
If {un}n∈N is an orthonormal basis on H then:

un ⇀ 0 as n → ∞.

However {un}n∈N does not converges strongly to 0.

Proof. For any x ∈ H, by Parseval identity we obtain:

∥x∥2 =
∑
n∈N

x2n

then xn → 0 which is ⟨x, un⟩ → 0 for each x ∈ H as n → ∞. Thus un ⇀ 0.
As ∥un∥ = 1, the sequence cannot converge strongly to 0. ■

Example 3.4.38 . We see that H = L2((−π, π)) has the following orthonor-
mal basis: {

1√
2π

,
sin(nt)√

π
,
cos(nt)√

π

}
n∈N0

.

Therefore any function f ∈ L2((−π, π)) can be written as a sum of its
Fourier series, namely

f(t) =
a0√
2π

+

∞∑
n=1

an√
π
cos(nt) +

∞∑
n=1

bn√
π
sin(nt)
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and the convergence is in L2((−π, π)).

The Fourier coefficient are given by:

a0 =
1√
2π

∫ π

−π
f(t) dt,

an =
1

π

∫ π

−π
f(t) cos(nt) dt, bn =

1

π

∫ π

−π
f(t) sin(nt) dt.

One can prove that if f ∈ C2([−π, π]) then its Fourier series converges to f
uniformly.
Just integrate by part the integrals defining an and bn twice.

Finite dimensional projectors Here we will see how we can also project
elements onto finte dimensional spaces. This will be useful to make many
useful counterexamples and understand some concepts.
Let (H, ⟨·, ·⟩) be a Hilbert space, and {vn}n∈N be an orthonormal ba-
sis.

Set
HN = span{v1, . . . , vN}.

This is a closed subspace: an explicit representation of the projection on its
is:

PHN
x =

N∑
n=1

⟨x, vn⟩ vn =
N∑

n=1

xnvn.

Notice that PHN
∈ K(H) since it is finite-rank, and

∥x− PHN
x∥ → 0

as N → +∞, but {PN}N∈N0 does not converge in B(H) if dim⊥H = ℵ0.
Indeed it would converge to the identity operator which is not compact
while the projectors PHN

are.

The space l2 is a model of a separable Hilbert space bla bla
blaRemember that any separable Hilbert space has a Schauder basis.

Proposition 3.4.39
Let (H, ⟨·, ·⟩) be a separable Hilbert space.

287



Then it is linearly isomorphic and isometric to l2.

Proof. Let {vn}n∈N ⊂ H be an orthonormal basis of H.
The mapping F : H → l2, defined by

x 7→ Fx = {xn}n∈N

where xn is the n-th Fourier coefficient of x, is well defined, due to Bessel’s
inequality.
Notice that it is also injective and surjective.

Let {an}n∈N ∈ l2 and consider ∑
n∈N

anun

where {un}n∈N is an orthonormal basis in H.

The series converges to some x ∈ H, indeed:∥∥∥∥∥∑
n∈N

anun

∥∥∥∥∥
2

≤
∑
n∈N

|an|2 ∥un∥2 =
∑
n∈N

|an|2 = ∥{an}∥2l2 < +∞

Moreover, for any fixed m ∈ N we have:〈
n∑

k=0

akuk, um

〉
= am

for n > m.

Letting n go to ∞ we find xm = ⟨x, um⟩ = am.

Thus
Fx = {an}n∈N.

Finally we also use the bounded inverse mapping theorem (see 3.2.43 on
page 224) to prove that the inverse is also bounded.

■
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3.4.7 Linear Bounded Operators in Hilbert Spaces

Now we will generalize one of the most powerful theorem of Linear Algebra
to infinite dimensional case. The crucial element we have to build is about
how to calculate the norm of an operator. In case of bounded operators we
can use a bilinear form, the scalar product.

Proposition 3.4.40
Let (H, ⟨·, ·⟩) be a separable Hilbert space, and T ∈ B(H).
Then we have:

∥T∥B(H) = sup
∥x∥=1, ∥y∥=1

|⟨Tx, y⟩| .

Proof. Observe that (see the CS inequality 3.4.3 on page 259)

|⟨Tx, y⟩| ≤ ∥Tx∥ ∥y∥ ≤ ∥T∥ ∥x∥ ∥y∥ =⇒ sup
∥y∥=∥x∥=1

|⟨Tx, y⟩| ≤ ∥T∥ .

On the other hand, taking y = Tx
∥Tx∥ , with Tx ̸= 0, we have the equality:

sup
∥y∥=∥x∥=1

|⟨Tx, y⟩| ≥ sup
∥x∥=1

∣∣∣∣〈Tx, Tx

∥Tx∥

〉∣∣∣∣ = sup
∥x∥=1

∥Tx∥2

∥Tx∥
= ∥T∥

■

Let {vn}n∈N be an orthonormal basis in (H, ⟨·, ·⟩), separable Hilbert space.
Then let

x =
∑
n∈N

xnvn.

The sequence of partial sums converges in H to x, and T is continuous,
thus

Tx =
∑
n∈N

xnTvn.

But in turn Tvn =
∑

m∈N ⟨Tvn, vm⟩ vm.
Set Tnm = ⟨Tvn, vm⟩ to have Tx =

∑
n∈N

∑
m∈N xnTnmvm.

Therefore, being y =
∑

n∈N ynvn, we have ⟨Tx, y⟩ =
∑

n,m∈N Tnmxnym,
and:

∥T∥B(H) = sup
∥{xn}∥l2=1
∥{yn}∥l2=1

∣∣∣∑Tnmxnym

∣∣∣ .
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Where Tnm are the Fourier coefficients of T .

Definition 3.4.41
Let (H, ⟨·, ·⟩) be a separable Hilbert space.
We say that T ∈ B(H) is symmetric if

⟨Tx, y⟩ = ⟨x, Ty⟩ ∀x, y ∈ H.

Observe that T is symmetric if and only if Tnm = Tmn.

Proposition 3.4.42
If T ∈ B(H) is symmetric, then ∥T∥B(H) = sup∥x∥=1 | ⟨Tx, x⟩ |.

Proof. Set
c = sup

∥x∥=1
| ⟨Tx, x⟩ |;

it is easy to realize that (see the CS inequality 3.4.3 on page 259) c ≤
∥T∥B(H).
Vice-versa we have, for any x, y ∈ H:

4 ⟨Tx, y⟩ = ⟨T (x+ y), x+ y⟩ − ⟨T (x− y), x− y⟩
≤ c(∥x+ y∥2 + ∥x− y∥2)
= 2c(∥x∥2 + ∥y∥2)

where at the last equality we have applied the parallelogram identity.

Suppose now Tx ̸= 0 (otherwise the proof is trivial) and take

y =
∥x∥
∥Tx∥

Tx.

Then we have:
∥x∥ ∥Tx∥ ≤ c ∥x∥2

which implies
∥Tx∥ ≤ c ∥x∥

and then
∥T∥B(H) ≤ c.

Therefore ∥T∥B(H) = c and this concludes the proof. ■
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Example 3.4.43 . Let V ⊂ H be a closed subspace. The projector PV ∈
B(H) is symmetric, indeed:

⟨PV x, y⟩ = ⟨PV x, PV y + PV ⊥y⟩
= ⟨PV x, PV y⟩
= ⟨PV x+ PV ⊥x, PV y⟩
= ⟨x, PV y⟩ .

Moreover, if V is finite dimensional, notice that PV is compact and sym-
metric.

Example 3.4.44 . Consider the space H = L2(Ω) where Ω ∈ L(RN ).
Let G ∈ L2(Ω× Ω), and KG be the associated Hilbert–Schmidt operator:

KGu(t) =

∫ 1

0
G(t, s)u(s) dλ.

We already know that KG ∈ K(H). You can prove that: KG is symmetric
if and only if G(t, s) = G(s, t) a.e. in Ω× Ω.

Eigenvalues and eigenvectors

Definition 3.4.45
Let T ∈ B(H).
A real number λ ∈ R is an eigenvalue for T if there exists u ∈ H,
such that u ̸= 0 and:

Tu = λu.

In this case u is the eigenvector of T associated with λ.
The linear subspace generated by all the eigenvectors associated
with λ is called eigenspace of λ and is denoted with Eλ.

Proposition 3.4.46
Any eigenspace Eλ is closed.

You can prove this result. Do it!58

Moreover for any eigenvalue and its eigenvector we have

∥Tu∥
u

= |λ|

58Hint: use the continuity of T .
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and
|λ| ≤ ∥T∥B(H) .

Definition 3.4.47
The dimension of the eigenspace associated to λ, namely dimEλ, is
called geometric multiplicity of λ.

Notice that in Hilbert spaces there is no such thing as algebraic multiplicity
of an eigenvalue.

Proposition 3.4.48
Let T ∈ B(H) symmetric.
Given two distinct eigenvalues of T , their associated eigenvectors
are mutually orthogonal, and therefore are linearly independent.
Moreover we have also that the eigenvalues of T are at most count-
able.

Proof. Let u1 and u2 be the eigenvector associated with λ1 and λ2, where
λ1 ̸= 0 (otherwise just swap the indexes).
Then we have:

⟨u1, u2⟩ =
1

λ1
⟨Tu1, u2⟩ =

1

λ1
⟨u1, Tu2⟩ =

λ2

λ1
⟨u1, u2⟩ .

As λ2
λ1

̸= 0, we have that necessary ⟨u1, u2⟩ = 0.

Finally, as H is separable, the eigenvalues are at most countable. ■

Compactness

Proposition 3.4.49
Let K ∈ K(H) be symmetric.
Then ∥K∥B(H) or −∥K∥B(H) is an eigenvalue of K.

Proof. First, observe that if ∥K∥B(H) = 0 then the thesis is trivial.
Consider c = ∥K∥B(H) and suppose c > 0 We know that c = sup∥x∥=1 | ⟨Kx, x⟩ |
and thus, by definition, there exists a maximizing sequence {xn}n∈N ⊂ H
such that ∥xn∥ = 1 and

| ⟨Kxn, xn⟩ | → c.
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Since {xn} is bounded and H is reflexive there exist {xnh
}h∈N such that

xnh
⇀ x and ∥x∥ < 1 (see Eberlein–Šmulian theorem 3.3.38 on page 249).

Moreover, via weak-strong continuity of K we have Kxnh
→ Kx (see the-

orem 3.3.45 on page 251).
Hence

| ⟨Kxnh
, xnh

⟩ | → | ⟨Kx, x⟩ | = c ̸= 0,

and x ̸= 0.

Suppose, without loss of generality, c = ⟨Kx, x⟩. Observe that:

∥Kx− cx∥2 = ∥Kx∥2 + c2 ∥x∥2 − 2c ⟨Kx, x⟩
= ∥Kx∥2 + c2 ∥x∥2 − 2c2

≤ 2c2 ∥x∥2 − 2c2

≤ 0

So Kx = cx, that is x is the eigenvector associated with c. ■

Therefore, if K ∈ K(H) symmetric, its norm can be equivalently defined as
follows:

∥K∥B(H) = max{|λ| : λ is an eigenvalue of K}.

Proposition 3.4.50
Let K ∈ K(H) and λ ̸= 0 be an eigenvalue of K.
Then the geometric multiplicity of λ is finite, namely:

dimEλ ≤ ∞.

Proof. Suppose by contradiction that the dimension is infinite: let {vn}n∈N
be an orthonormal basis of Eλ.
Then Kvn = λvn ∀n ∈ N, vn ⇀ 0 and ∥vn∥ = 1 for all n ∈ N.
Thus Kvn → 0 but vn ̸→ 0, which is absurd. ■

The spectrum

Definition 3.4.51
Let T ∈ B(H) be symmetric.
Define the spectrum of T as:

σ(T ) := {λ ∈ R : λ is an eigenvalue of T}.
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Moreover define the resolvent of T :

R(T ) := σ(T )C.

It is easy to see that if µ ∈ R(K) then Ker(µI−K) = {0} and so is injective.
Note also that if T ∈ K(H) is symmetric then σ(T ) ̸= 0.

Theorem 3.4.52 (spectral theorem)
Let K ∈ K(H) be symmetric. Then:

• either σ(K) is finite,

• or σ(K) is a sequence {λn}n∈N such that λn → 0.

In both cases 0 can be either an eigenvalue or not.
Moreover, we can always choose the eigenvectors in such a way that
they form an orthonormal basis on H.

If H has infinite dimension and σ(T ) is finite the 0 is necessarily an eigen-
value and E0 has infinite dimension. Otherwise if σ(T ) is a sequence and 0
is an eigenvalue then E0 can have either finite or infinite dimension.

Proof. Let λ1 be an eigenvalue such that (see 3.4.49 on page 292) |λ1| =
∥T∥B(H), and Eλ1 be its eigenspace.

If λ1 = 0, then Ker(T ) = H and T ≡ 0. Therefore σ(T ) = 0, any orthonor-
mal basis of H is a basis of the eigenspace, and the theorem is proven.

If λ1 ̸= 0, we know that Eλ1 has finite dimension and setting H1 = E⊥
λ1

we
have:

H = Eλ1 ⊕ E⊥
λ1
.

We have

⟨Ty, x⟩ = ⟨y, Tx⟩ = ⟨y, λ1x⟩ = 0 ∀y ∈ H, x ∈ Eλ1

and so T (H1) ⊂ H1 (prove it).

Consider now T1 = T |H1 ∈ K(H1): if ∥T1∥B(H1)
= 0 we have finished,

otherwise we consider the non-zero eigenvalue λ2 such that:

|λ2| = ∥T1∥B(H1)
≤ |λ1| = ∥T∥B(H)

where λ2 has finite geometric multiplicity.
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Now set H2 = E⊥
λ2

: we have

H1 = Eλ2 ⊕H2.

Consider T2 = T1|H2 : either we find that the norm of the restricted operator
is zero after a finite number of steps, and the proof is finished, or we can
construct a sequence of non-zero eigenvalues {λn}n∈N0 such that

|λn+1| ≤ |λn| ∀n ∈ N0.

To conclude the proof of this case, first we have to show that λn → 0.

Suppose by contradiction that

Λ = inf
n∈N0

|λn| > 0.

We want it to be 0. For each Eλn consider an orthonormal basis of eigenvec-
tors and denote such whole sequence with {wk}k∈N0 , obviously it is bounded
and we have ∥wk∥ = 1.
As H is reflexive there exists (see 3.3.37 on page 248) a subsequence {wkh}
such that wkh ⇀ w.
Then

Twkh = λkhwkh

converges strongly to Tw (each eigenvalue is counted with is geometric
multiplicity).
Therefore: ∥∥λkhwkh − λkh′wkh′

∥∥2 = |λkh |
2 + |λkh′ |

2 ≥ 2Λ2,

but
∥∥Twkh − Twkh′

∥∥2 → 0 as h, h′ → ∞: this is a contradiction because it
implies Λ = 0.
So λn → 0 as n goes to ∞.

Observe now that if x ∈ Hn for all n ∈ N0 then

⟨x,wk⟩ = 0 ∀k ∈ N0

and
∥Tx∥ = ∥Tnx∥ ≤ ∥Tn∥B(Hn)

∥x∥ = |λn| ∥x∥ ∀n ∈ N0,

letting n go to ∞ we find Tx = 0, namely x ∈ Ker(T ).
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Then, either Ker(K) = {0}, and zero is not an eigenvalue, and the sequence
{wk}k∈N0 is an orthonormal basis for H, or Ker(K) ̸= {0}, and zero is
an eigenvalue, with finite or infinite multiplicity, and we have to add an
orthonormal basis of Ker(T ) in order to have an orthonormal basis for
H. ■

Consequences of the spectral theorem This result has two immediate
and important consequences: the diagonalization and the approximation
property.

Proposition 3.4.53 (diagonalization)
Let (H, ⟨·, ·⟩) be a separable Hilbert space, and T ∈ K(H) be sym-
metric.

If dim⊥H = N , then the spectral theorem 3.4.52 on page 294 coin-
cides with the homonymous theorem of Linear Algebra: T can be
identified as a Matrix once a basis is fixed.

If dim⊥H = ℵ0, let {wn}n∈N be an orthonormal basis of eigen-
vectors of T , then tn,m := ⟨Kwn, wn⟩ = λnδn,m, where each λn is
counted with its multiplicity, we have

Tx =
∑
n∈N

λnxnwn.

The approximation propertymaybe
this is
also a
proposi-
tion

is the following: consider (H, ⟨·, ·⟩) separable
Hilbert space, and T ∈ K(H) be symmetric.
Suppose also dim⊥H = ℵ0 and consider {wn}n∈N as an orthonormal basis
of eigenvectors of T . then we know that:

Tx =
∑
n∈N

λnxnwn.

Therefore by setting TNx =
∑N

n=1 λnxnwn we have:

∥Tx− TNx∥2 =
+∞∑
n=N

| ⟨(k − kn)x,wn⟩)|2

=

+∞∑
n=N+1

(λnxn ⟨wn, wn⟩)2
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≤

(
sup

n≥N+1
λ2
n

)
+∞∑

n=N+1

x2n ({λn} is decreasing)

≤ λ2
N+1

+∞∑
n=0

x2n = λ2
N+1 ∥x∥ ,

so that
∥T − TN∥B(H) ≤ λ2

N+1 → 0 as N → +∞.

Fredholm’s alternative We recall that in Banach spaces we stated with-
out proving corollary 3.3.50 on page 257. In this scenario, namely Hilbert
Spaces, we can give a similar result and a proof.

Theorem 3.4.54
Let (H, ⟨·, ·⟩) be a separable Hilbert space, and T ∈ K(H) be sym-
metric.
Let µ ∈ R, µ ̸= 0.
Then, either for any y ∈ H there exists a unique x ∈ H such that

µx− Tx = y.

or µ is an eigenvalue of T .

Moreover
Ker(µI − T )⊥ = Im(µ = −T ).

This implies that if µ ̸= 0 then

Ker(µI − T ) is finite dimensional

and
Ker(µI − T ) = {0} ⇐⇒ Im(µI − T ) = H.

The first one is because if µ is not an eigenvalue, we are in the first alterna-
tive, then we can choose y = 0 and there will be one and only one x such that
Tx− µx = 0, namely only one element in the Kernel: Ker(µI − T ) = {0}.
If instead µ is an eigenvalue, if we consider an element of the Kernel,
x ∈ Ker(µI − T ), this element is the eigenvector associated with µ, and
then Ker(µI−T ) = Eµ, with µ ̸= 0. But then (see 3.4.50 on page 293) this
space must be finite dimensional.

The second one is entailed by the ‘Moreover’ part of the theorem.
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Proof. If dim⊥H ̸= ℵ0 then the thesis follows from Fredholm’s alternative
(this would be a theorem of Linear Algebra).

Let {wn}n∈N be an orthonormal basis of eigenvectors of T and {λn}n∈N be
the sequence of corresponding eigenvalues (each counted with its multiplic-
ity). We have:

x =
∑
n∈N

xnwn Tx =
∑
n∈N

λnλnwn y =
∑
n∈N

ynwn;

then
µx− Tx =

∑
n∈N

(µ− λn)xnwn.

If y ∈ H, to find a solution to µx−Tx = y is equivalent to solve the system
of infinite equations

(µ− λn)xn = yn n ∈ N0.

If µ ̸= λn for any n ∈ N0 then the previous system is uniquely solvable by
taking xn = (µ− λn)

−1yn.

Alternatively, if µ = λ for some n ∈ N0, remember first that λn is counted
with its multiplicity m, that is:

λn = λn+1 = · · · = λn+m.

The key idea here is that:

Ker(µI − T ) = {x : µx− Tx = 0}
= {x : µx = Tx}
= {eigenvectors associated with µ}

Then we may have no solutions if y /∈ Ker(µI − T )⊥, i.e. if y is not
orthogonal to all the eigenvectors associated with µ.
Otherwise, there are m independent solutions.
We also conclude that the equation is solvable if and only if y ∈ Ker(µI −
T )⊥, namely if yj , j = n, . . . , n+m are all equal to zero, that is, y orthogonal
to all the eigenvectors associated with µ. In this latter case, we obviously
have infinite solutions. ■

From the previous theorem we have the following result:
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Proposition 3.4.55
Let (H, ⟨·, ·⟩) be a separable Hilbert space, and T ∈ K(H) be sym-
metric.
If |µ| ≤ ∥T∥B(H) then µ can be an eigenvalue of T .
If |µ| > ∥T∥B(H) then µ is not an eigenvalue of T and the equation
µx− Tx = y is uniquely solvable for all y ∈ H.

Example 3.4.56 . Consider H = L2(Ω), with Ω ∈ L(RN ) and consider:

(KGu)(x) =

∫
Ω
G(t, s)u(s) ds

with G ∈ L2(Ω×Ω) such that G(t, s) = G(s, t) almost everywhere in Ω×Ω:
we deduce that KG ∈ K(H) and is symmetric.

Therefore, if v ∈ H and we want to check the solvability of the equation

µu−KGu = v

for some µ ̸= 0 which is an eigenvalue for KG.
Then we need to check the following conditions∫

Ω
vwj dt = 0 j = 1, . . . ,m

where {w1, . . . , wm} is an orthonormal basis of Ker(µI −KG).

Example 3.4.57 . This example complete the example of application of Lax–
Milgram lemma 3.4.5 on page 277. Consider a bilinear form a : V0×V0 → R
defined by:

a(u, v) =

∫ b

a
[(α(x)u′(x) + β(x)u(x))v′(x) + γ(x)u(x)v(x)] dx

and assume α, γ ∈ L∞((a, b)), like the following:

α0 = inf
x∈[a,b]

α(x) > 0 and γ(x) ≥ 0 for almost any x ∈ [a, b].

Then a(·, ·) is a symmetric continuous and coercive bilinear form.
Moreover, its induced norm is equivalent to ∥·∥0.
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By Lax–Milgram (see theorem 3.4.25 on page 274) we have that for any
f ∈ L2((a, b)) there is a unique u ∈ V0 such that:

a(u, v) = ⟨f, v⟩ :=
∫ b

a
f(x)v(x) dx ∀v ∈ V0.

Thus linear operator K : L2((a, b)) → L2((a, b)) defined by

Kf = u ∈ V0

is compact.

Notice that K is also symmetric, indeed, we have:

a(Kf, v) = ⟨f, v⟩ , a(Kg, v) = ⟨g, v⟩ ∀v ∈ V0.

If we choose v = Jg in the first identity and v = Jf in the second one, we
get:

a(Kf,Kg) = ⟨f,Kg⟩ , a(Kg,Kf) = ⟨g,Kf⟩

but
a(Kf,Kg) = a(Kg,Kf)

so that
⟨f,Kg⟩ = ⟨g,Kf⟩ .

Thanks to the spectral theorem and recalling that K is injective since
KerK = {0}, we can say that K has a sequence of non-zero eigenvalues
{λn}n∈N such that λn → 0.

Moreover we can construct an orthonormal basis of L2((a, b)) which consists
of eigenfunctions {un}n∈N, namely

Kun = λnun implies a(un, v) = µn ⟨un, v⟩ ∀v ∈ V0

where µn = λ−1
n . Notice that these eigenfunctions form an orthogonal basis

of V0 as well.

As an exercise you can calculate the eigenvalues and eigenfunctions of K in
case of (a, b) = (0, 2π) and α = 1 and γ = 0.
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Examples on the spectra of non-compact linear bounded operators If
T ∈ K(H) is symmetric, then σ(T ) is always non-empty and countable.
This is not always true if compactness fails.

Example 3.4.58 . The identity operator I : H → H is symmetric and non-
compact if H has finite dimension. Notice that its spectrum is 1 and its
eigenspace is the whole H.

Example 3.4.59 . Consider H = L2((−1, 1)) and consider

(Tf)(t) = tf(t) a.e. in (-1,1).

Then T ∈ B(H) and is symmetric, but not compact.
Suppose ∃ f ̸≡ 0 and λ ∈ R such that Tf = λf for almost any t ∈ [−1, 1].
Then tf(t) = λf(t): it must be f ≡ 0, and σ(T ) = ∅.

Example 3.4.60 . Consider H = l2 and let:

TR(x) := {0, x1, x2, . . . , xn, . . .} ∀x = {x1, x2, . . . , xn, . . . } ∈ H,

TL(x) := {x2, x3, x4, . . . , xn, . . .} ∀x = {x1, x2, . . . , xn, . . . } ∈ H.

It’s easy to prove that TR, TL ∈ B(H) but they are not neither compact nor
symmetric.

It’s easy to check that σ(TR) = ∅.

Concerning TL, from TLx = λx we deduce:

λx1 = x2, λx2 = x3, . . . , λxn = xn+1, . . .

for all n ∈ N0.
Then x = {1, λ, λ2, . . . , λn+1, . . .} is an eigenvalue for TL if and only if
x ∈ l2, that is if and only if |λ| < 1. Thus

σ(TL) = (−1, 1).

Example 3.4.61 . Consider H = l2. Let . Suppose ∃x ̸= 0 such that Trx =
λx for some λ ∈ R. Then 0 = λx1, x1 = λx2, and so on. If λ = 0, then
x = 0, and λ is not an eigenvector. If λ ̸= 0, then it must be x1 = 0, x2 = 0,
and so on; then again x = 0. Therefore Tr has no eigenvalues: σ(Tr) = ∅.
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Example 3.4.62 . Consider again H = l2, and define Tl({xn}n∈N) := {x2, x3, . . . , xn, . . .}.
Suppose ∃x ̸= 0 such that Trx = λx for some λ ∈ R. Then λx2 = x1,
λx3 = x2, and in general λxn+1 = xn.
If λ = 0, then (x1, 0, . . . , 0, . . . , 0) is an eigenvector for any x1 ̸= 0. There-
fore λ = 0 is an eigenvalue.
If λ ̸= 0, we have xn+1 = λnx1. Moreover:

x = (1, λ, λ2, . . . , λn, . . .) ∈ l2 ⇐⇒
∑
n∈N

λ2n < +∞ ⇐⇒ |λ| < 1

Therefore σ(Tl) = (−1, 1): the spectrum is continuous.
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Appendices

A Limits

Given a sequence {xn}n∈N we define:

lim sup
n→∞

xn = lim
n→∞

(
sup
k≥n

xk

)
= inf

n≥0

(
sup
k≥n

xk

)
,

and
lim inf
n→∞

xn = lim
n→∞

(
inf
k≥n

xk

)
= sup

n≥0

(
inf
k≥n

xk

)
.

The limit exists if the lim inf and lim sup coincide, that is:

lim
n→∞

xn = lim sup
n→∞

xn = lim inf
n→∞

xn.

Talking about functions, consider f : (X, d) → R⋆, we define:

lim sup
n→∞

fn(x) := inf
n≥0

(
sup
k≥n

fk(x)

)
, lim inf

n→∞
fn(x) := sup

n≥0

(
inf
k≥n

fk(x)

)
.

We can build the notion of liminf and limit in the same manner as we have
done with sequences.

For a more general context consider a sequence of sets {An}n. The we can
define:

lim sup
n→∞

An =
∞⋂
n=1

⋃
k>n

Ak and lim inf
n→∞

An =
∞⋃
n=1

⋂
k>n

Ak.

Further results One can prove that:

lim inf(−⋆) = − lim sup(⋆).

Another result is the following: given two sequences an, bn then:

lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

(an) + lim inf
n→∞

(bn);

if an converges to a we have also that the equality holds:

lim inf
n→∞

(an + bn) = a+ lim inf
n→∞

(bn).
check the
limsup
case
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B Additional proofs

Proposition B.0.1
The set of polynomials with integer coefficients is countable.

Proof. First consider the set Pn of polynomials of degree n with nonnegative
integer coefficients. First, since there are infinitely many primes, there exists
an injective map p : N → Q which enumerates the set of prime numbers
Q ⊂ N. Then there is a map

f : Pn → N

given by

f (anx
n + · · ·+ a1x+ a0) = 2a03a15a2 · · · p(n+ 1)an

By unique factorization, this map is one-to-one (the same argument as the
proof that A × B is countable if A and B are countable − one could also
show that Pn is equinumerous to N × N × N × · · · × N where there are n
factors). Thus Pn is countable. Finally, the set of polynomials P can be
expressed as

P =
∞⋃
n=0

Pn

which is a union of countable sets, and hence countable. ■

Proposition B.0.2
The set of algebraic numbers is countable.

Proof. By B.0.1, we know that the set P of polynomials is countable. Each
polynomial of degree n has at most n roots, thus for any polynomial p, the
set Rp of roots of p is countable. Thus the set A of algebraic numbers can
be expressed as

A =
⋃
p∈P

Rp

is a countable union of countable sets, and hence countable. ■
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